Phone: (718) 982-3621
email: allen.tesdall at csi dot cuny dot edu
I am an Associate Professor in the Mathematics Department. My research is in the area of hyperbolic systems of conservation laws, with emphasis on numerical methods for self-similar solutions and mixed type problems.
A. M. Tesdall, R. Sanders, and N. Popivanov, Further results on Guderley Mach reflection and the triple point paradox, Journal of Scientific Computing, 64, no. 3 (2015), pp. 721-744. (PDF preprint)
J. S. Hesthaven, J.-H. Jung, and A. M. Tesdall, Hyperbolic problems: theory and computation, Journal of Scientific
Computing, 64 (2015), no. 3, pp. 587-590.
N. Popivanov, T. Popov, and A. M. Tesdall, Semi-Fredholm solvability in the framework of singular solutions for the (3+1)-D Protter-Morawetz problem, Abstract and Applied Analysis, vol. 2014, Art. ID 260287, 2014. (PDF preprint)
A. M. Tesdall and J. K. Hunter, Self-similar solutions for the diffraction of weak shocks, Journal of Computational Science, 4 (2013), 92-100. (PDF preprint)
A. M. Tesdall, J.-H. Jung, I. Kotsireas, and R. Melnik, Preface, Special issue: Computational methods for hyperbolic
problems, Journal of Computational Science 4 (2013), 1-2.
B. L. Keyfitz, A. M. Tesdall, K. R. Payne, and N. I. Popivanov, The sonic line as a free boundary, Quarterly of Applied Mathematics, 71 (2013), pp. 119-133. (PDF preprint)
N. Popivanov, T. Popov and A. M. Tesdall, Asymptotic expansions of singular solutions for Protter problems, American Institute of Physics Conference Proceedings 1570, 335 (2013); doi:10.1063/1.4854774. (PDF preprint)
J. K. Hunter and A. M. Tesdall, On the self-similar diffraction of a weak shock into an expansion wavefront, SIAM Journal on Applied Mathematics, 72 (2012), pp. 124-143. (PDF preprint)
A. M. Tesdall,
High resolution solutions for the supersonic formation of shocks in transonic flow,
Journal of Hyperbolic Differential Equations, 8 (2011), pp. 485-506. (PDF preprint)
A. M. Tesdall and B. L. Keyfitz,
A continuous, two-way free boundary in the unsteady transonic small disturbance equations,
Journal of Hyperbolic Differential Equations, 7 (2010), pp. 317-338. (PDF preprint)
R. Sanders and A. M. Tesdall,
The von Neumann triple point paradox, Partial Differential Equations: Modelling and Numerical Simulation (R. Glowinski and P. Neittaanmaki, eds.), Computational Methods in Applied Sciences, vol. 16, Springer, Dordrecht, The Netherlands, 2008, pp. 113-128.
(PDF preprint)
A. M. Tesdall, R. Sanders, and B. L. Keyfitz,
Self-similar solutions for the triple point paradox in gasdynamics, SIAM Journal on Applied Mathematics,
68 (2008), pp. 1360-1377. (PDF preprint)
A. M. Tesdall, R. Sanders, and B. L. Keyfitz,
The triple point paradox for the nonlinear wave system,
SIAM Journal on Applied Mathematics, 67 (2006), pp. 321-336. (PDF preprint)
J. K. Hunter and A. M. Tesdall, Weak shock reflection, A Celebration of Mathematical Modeling: The Joseph B. Keller Anniversary Volume (D. Givoli, M. Grote and G. Papanicolaou, eds.), Kluwer Academic Press, New York, 2004, pp. 93-112.
(PDF preprint)
J. K. Hunter and A. M. Tesdall,
Transonic solutions for the
Mach reflection of weak shocks, IUTAM Symposium Transsonicum IV (Dordrecht, The Netherlands) (H. Sobieczky, ed.), Kluwer-Academic Publishers, 2003, pp. 7-12. (PDF preprint)
O. Kreylos, A. M. Tesdall, B. Hamann, J. K. Hunter and K. I. Joy,
Interactive visualization and steering of CFD simulations, Proceedings of the Joint Eurographics and IEEE TCVG Symposium on Visualization (New York) (D. S. Ebert, P. Brunet, and I. Navazo, eds.), Springer, 2002, pp. 25-34.
(PDF preprint)
A. M. Tesdall and J. K. Hunter,
Self-similar solutions for
weak shock reflection, SIAM Journal on Applied Mathematics, 63 (2002), pp. 42-61.
(PDF preprint)