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Abstract
The existence of inertial manifolds for a Smoluchowski equation—a nonlinear
and nonlocal Fokker–Planck equation which arises in the modelling of colloidal
suspensions—is investigated. The difficulty due to first-order derivatives in the
nonlinearity is circumvented by a transformation.
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1. Introduction

The Smoluchowski equation describes the temporal evolution of the probability distribution
function ψ for directions of rod-like particles in a suspension. The equation has the form of a
Fokker–Planck equation

∂tψ = #ψ + ∇ · (ψ∇V ).

It is, however, phrased on either the unit sphere or the unit circle, and the gradient, the divergence
and the Laplacian are correspondingly modified. The unknown function V stands for a
mean-field potential resulting from the excluded volume effects due to steric forces between
molecules. Unlike the Fokker–Planck equation, the equation is quadratically nonlinear due to
the dependence of V on the probability distribution ψ , and it is nonlocal, since this dependence
is nonlocal, as well. In this paper, we shall use a particular type of mean-field potential due to
Maier and Saupe [22], which can be thought of as the projection of the probability distribution
function on the second eigenspace of the Laplace–Beltrami operator multiplied by a constant.

Historically, the Smoluchowski equation was preceded by a variational model for colloidal
suspensions due to Onsager [23]. Onsager calculated the free energy functional, and derived the
Euler–Lagrange equation for the steady states. The mean-field potential used in his work was
different, and the Maier–Saupe potential is a truncation of this potential. However, it is widely
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accepted that it affords sufficient degrees of freedom to capture the dynamics of the micro–
micro interaction. In a recent development, the bifurcation diagram was confirmed rigorously
for both the 2D and the 3D cases (see [5, 6, 8, 13, 18, 19]). In the 2D case, as the potential
intensity increases, the equation undergoes a pitchfork bifurcation, in which two equivalent
nematic steady states (probability distribution concentrates to one direction) emerge from the
isotropic one. In the 3D case, the equation undergoes two bifurcations. At a lower potential
intensity, the equation undergoes a saddle-node bifurcation, in which a prolate nematic steady
state (probability distribution concentrates to one direction) and an oblate nematic steady state
(probability distribution concentrates uniformly to the equator) emerge.

The Smoluchowski equation was first proposed in the works of Doi [10] and Hess [17] as
a dynamical model for nematic liquid crystalline polymers. In this paper, we study a version
of the equation in which the interaction with the ambient flow is neglected. In this case,
the equation becomes a gradient system with free energy as the Lyapunov functional, it is
dissipative in a Gevrey class of analytic functions and it possesses a finite-dimensional global
attractor consisting of the steady states and their unstable manifolds. In addition, the second
eigenmode is a single determining mode for the 2D equation. All these facts point to the finite
dimensionality of the dynamics. The best framework for describing the finite dimensionality of
a partial differential equation (PDE) is within the context of inertial manifolds, when they exist.
First introduced by Foias et al in [15], they are defined as finite-dimensional positive-invariant
Lipschitz manifolds which attract all solutions exponentially, and on which the solutions of the
PDE can be recovered from solutions of a system of ordinary differential equations (ODEs),
termed the inertial form. One of the most notable examples of parabolic PDEs which possess
inertial manifolds is the Kuramoto–Sivashinsky equation [14]. There is also a large class
of dissipative PDEs, most notably the 2D Navier–Stokes equation, which possess a finite-
dimensional attractor, for which, however, the existence of inertial manifolds is still open.
The main difficulty in proving the existence of inertial manifolds lies in a very restrictive
spectral gap condition; this is especially true in the presence of first-order derivatives in the
nonlinearity, as is the case for the Smoluchowski equation and the Navier–Stokes equations.
This difficulty for the 2D Smoluchowski equation is circumvented in this paper by transforming
it to a parabolic equation that does not contain a spatial derivative in the nonlinearity.

The paper is structured as follows. We first review some basic properties of the 2D
Smoluchowski equation. The equation is transformed into an infinite system of ODEs, and
the existence of an absorbing cone is proven. In the section that follows, we define inertial
manifolds and state a theorem for their existence. Different proofs are available in the literature
(e.g. [3, 24, 25]). We then transform the Smoluchowski equation in order to remove the
first-order derivatives from the nonlinearity. Since Lipschitz continuity of the nonlinearity
is required in order to apply the existence theorem, we then modify the equation outside the
absorbing cone, and apply the existing theory of inertial manifolds to this prepared equation.
This, in turn, yields the existence of inertial manifolds for the Smoluchowski equation.

Let us also remark that the dynamics of the Smoluchowski equation becomes much more
complex when we allow for interaction with the ambient flow. Even a passive interaction with
a shear flow leads to complicated and peculiar dynamical behaviour. This is due to the fact that
the fluid introduces a nonvariational element to the dynamics, even though the nonlinearity
remains unchanged. The equation ceases to be a gradient system, and the attractor becomes
a much more complicated object: in addition to flow-aligning (steady states), different time-
periodic solution regimes and chaos were confirmed numerically. The method developed here
can be modified to prove the existence of inertial manifolds in this dynamically more interesting
case (see [26]).
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2. Preliminary information

2.1. 2D Smoluchowski equation

We study a Smoluchowski equation on a circle S1 = [0, 2π ]

ψt = ψϕϕ + (ψVϕ)ϕ . (2.1)

The unknown ψ in the equation is the probability distribution function for the orientation of
rigid rod-like molecules in a suspension, and the unknown V is a mean-field intermolecular
interaction potential resulting from the excluded volume effects due to steric forces between
molecules. In this paper, we use the Maier–Saupe potential given by

V (ϕ, t) = −b(m ⊗ m − I/2) : 〈m ⊗ m − I/2〉ψ(t), (2.2)

where m(ϕ) = (cos ϕ, sin ϕ), 〈f 〉ψ =
∫ 2π

0 f (ϕ)ψ(ϕ) dϕ, and the parameter b > 0 denotes the
potential intensity. Regarding the existence, uniqueness and regularity of solutions of (2.1), it
is easy to prove the following theorem (see [5, 6]).

Theorem 1. Let ψ0 > 0 be a continuous function on S1 such that
∫ 2π

0 ψ = 1. A unique smooth
solution ψ(t) = S(t)ψ0 of (2.1) for an initial datum ψ(0) = ψ0 exists for all nonnegative
times, and remains positive and normalized

∫ 2π

0
ψ(ϕ, t) dϕ = 1.

The Smoluchowski equation preserves certain symmetries. Symmetry with respect to the origin
is preserved, reflecting the fact that we do not distinguish between orientations m and −m.
Also, symmetry with respect to any line passing through the origin is preserved. Therefore,
the form of a solution ψ expended in a Fourier series as

ψ(ϕ, t) = 1
2π

+
1
π

∞∑

k=1

yk(t) cos(2kϕ),

where

yk(t) = 〈cos 2kϕ〉ψ =
∫ 2π

0
cos(2kϕ)ψ(ϕ, t) dϕ

is preserved. We will restrict ourselves to the study of solutions with such symmetry. The
normalization implies y0 = 1 and |yk| ! 1. In this setting, the 2D Smoluchowski equation
can also be written as an infinite system of ODEs

y0 = 1,

y ′
k + 4k2yk = bky1(yk−1 − yk+1), k = 1, 2, . . .

. (2.3)

In particular,

y ′
1 = [b(1 − y2) − 4]y1, (2.4)

so the sign of y1 does not change in the evolution. It is an easy observation that if

ψ(ϕ, t) = 1
2π

+
1
π

∞∑

k=1

yk(t) cos(2kϕ)

is a solution, so is

ψ(ϕ − π/2, t) = 1
2π

+
1
π

∞∑

k=1

(−1)kyk(t) cos(2kϕ).
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Therefore, every solution ψ with y1(t) > 0, t " 0 has a corresponding solution ψ(· − π/2)

with y1(t) < 0, t " 0, and vice versa. Also, y1 = 0 (V ≡ 0) is preserved by the flow.
The solutions on that subspace satisfy the heat equation ψt = ψϕϕ , and, consequently, decay
exponentially to the steady state ψ̄ = 1/2π . Therefore, it suffices to study the equation for
y1 > 0. Note that the potential can be written as

V (ϕ, t) = −b

2
y1(t) cos(2ϕ),

and its evolution follows the equation:

Vt = [b(1 − y2) − 4]V. (2.5)

2.2. Dissipativity and the global attractor

Let

H =
{
ψ ∈ L2(S1; R+) :ψ(−ϕ) = ψ(ϕ), ψ(ϕ + π/2) = ψ(ϕ),

∫ 2π

0
ψ = 1, 〈cos 2ϕ〉ψ > 0

}
.

For f (k) = a2k , 1 < a2 < 1 + 1/b, we define the following Gevrey class of functions:

Hf :=
{

ψ(ϕ) = 1
2π

+
1
π

∞∑

k=1

yk cos(2kϕ) :
∞∑

k=1

f (k)

k
y2

k < ∞, ψ > 0, y1 > 0

}

(2.6)

endowed with the norm

|ψ − ψ̄ |f =
( ∞∑

k=1

f (k)

k
y2

k

)1/2

. (2.7)

Hf is a subset of the set of real-analytic functions. Also, for each n ∈ N ∪ {0} there exists a
combinatorial constant Mn > 0 depending on a, such that

‖∂n
ϕ (ψ − ψ̄)‖∞ ! Mn|ψ − ψ̄ |f , ψ ∈ Hf . (2.8)

In paper [7], it was proven that (2.1) is dissipative in the sense that, for initial data of the form

ψ0(ϕ) = 1
2π

+
1
π

∞∑

k=1

yk(0) cos(2kϕ) (2.9)

belonging to a bounded set U ⊂ H−1/2(S1), there exist TU > 0 so that for t " TU the solution
satisfies |ψ(t) − ψ̄ |f !

√
b, and, consequently, ‖∂n

ϕ (ψ − ψu)‖∞ ! Mn

√
b. In other words,

the ball of radius
√

b in Hf is an absorbing set: all solutions of (2.1) enter this set to remain
there, eventually. The Smoluchowski equation possesses even smaller absorbing sets. First,
we observe that the quotient zk = yk/y1 satisfies the ODE

z′
k + 4(k2 − 1)zk = bky1(zk−1 − zk+1) − bzk(1 − y2), k = 2, 3, 4, . . . ,

and therefore
d

2 dt
(z2

k) + 4(k2 − 1)z2
k = bky1(zk−1zk − zkzk+1) − bz2

k(1 − y2), k = 2, 3, 4, . . . .

Multiplying by f (k)/k and summing yields the inequality

d
2 dt

∞∑

k=2

f (k)

k
z2
k + 2

∞∑

k=2

kf (k)z2
k ! b|y2|.
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In particular, |ψ(t)|f /y1 with ψ0 ∈ U is dissipated in time, until eventually

|ψ(t)|f <
√

by1, t " TU . (2.10)

In particular, the cone-like set

Cb =
{
ψ ∈ Hf : |ψ |f <

√
by1

}

is absorbing and invariant:

S(t)Cb ⊂ Cb, t " 0.

The eigenmode y1 is significant also in the sense that it is a determining mode, i.e. if for two
solutions

lim
t→∞

|y(1)
1 (t) − y

(2)
1 (t)| = 0,

then

lim
t→∞

|ψ (1)(t) − ψ (2)(t)|f = 0.

The 2D Smoluchowski equation has a global attractor A defined as the maximal compact set
which is invariant: S(t)A = A for all t ∈ R, and attracts all solutions: dist(S(t)ψ0, A) → 0
as t → ∞ for any ψ0. It is easily proven that A is finite dimensional. Also, the structure of
A is somewhat simple due to the fact that the equation (2.1) is a gradient system. Denoting
u = ψ exp(V/2), the Lyapunov functional is given by

F(t) =
∫ 2π

0
ψ log u dϕ,

which satisfies the equation

dF
dt

= −
∫ 2π

0
|(V + log ψ)ϕ|2ψ dϕ.

For dissipative gradient systems, the dynamical behaviour is characterized by a global attractor
which is formed by the steady states and their unstable manifolds. The right-hand side of the
energy dissipation equation yields the equation for the steady states

V + log ψ = const.,

which after denoting r = (b/4)〈cos 2ϕ〉ψ can be written as

ψ(ϕ) = exp(2r cos 2ϕ)
∫ 2π

0 exp(2r cos 2ϕ)
.

It was shown that at b = 4 equation (2.1) undergoes a pitchfork bifurcation. For b < 4 the
isotropic solution ψ̄ = 1/2π is the unique steady state, and it is asymptotically stable. In
this case, A = {ψ̄}, and all solutions converge to the isotropic steady state, exponentially.
For b > 4, two anisotropic steady states ψ±

b of the above form (r = ±r∗
b ) emerge from the

isotropic steady state. Note that the relationship between the two anisotropic steady states is
ψ−

b (ϕ) = ψ+
b (ϕ −π/2). All solutions of the equation (2.1) converge to one of the three steady

states. In view of (2.4), if ψ(t) → ψ̄ with y1 0≡ 0, then y2(t) → 0 implies that y1(t) → ∞
exponentially as t → ∞, which is a contradiction. Therefore, if b > 4, ψ̄ is a saddle with the
set {y1 = 0} as the basin of attraction. The nematic steady states ψ+

b and ψ−
b are attracting

points with the sets {y1 > 0} and {y1 < 0}, respectively, as basins of attraction. The global
attractor consists of the three steady states and the unstable manifolds of the saddle. Since
the dynamics on the set {y1 < 0} merely mirrors the dynamics on the set {y1 > 0}, and the
dynamics on the set {y1 = 0} is trivial, we restrict our study to the set {y1 > 0}. In this
case, A = {ψ+

b }. However, since y2(t) → 1 − 4/b as t → ∞, in view of (2.4), the rates of
convergence to ψ+

b are hard to determine.
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2.3. Inertial manifolds

The Smoluchowski equation possesses a finite-dimensional global attractor, has a single
determining mode and has a simple bifurcation structure of a kind which is typically
encountered in systems of ODEs. Therefore, even though as a PDE the Smoluchowski
equation is intrinsically infinite dimensional, its dynamics exhibits properties typical of finite-
dimensional dynamical systems.

The global attractor is a central object in the study of long-term dynamics. It, however,
appears to be inadequate in capturing the finite dimensionality of the dynamics. This is
mainly due to two facts. Firstly, it can be a very complicated set which is not a manifold,
and the dynamics on it may not be reduced to a finite system of ODEs. Secondly, although
all solutions approach this set, they do so at arbitrary rates (algebraic or exponential), so the
dynamics outside of the attractor is not best tracked on the attractor itself. When they exist,
the so-called inertial manifolds are more suitable to capture the finite dimensionality of a PDE.
Introduced by Foias et al in [15], it was defined to remedy these shortcomings of the global
attractor.

Consider an evolution equation on a Hilbert space H endowed with the inner product
(·, ·), and the norm |·| of the form

∂t u + Au = N(u), (2.11)

where A is a positive self-adjoint linear operator with compact inverse, and N : H → H is
a locally Lipschitz function. Recall that, since A−1 is compact, there exists a complete set of
eigenfunctions wk for A

Awk = λkwk.

We arrange the eigenvalues in a nondecreasing sequence λk ! λk+1, k = 1, 2, . . . It is a
well-known fact that λk → ∞ as k → ∞. We also define the projection operators

Pnu =
n∑

k=1

(u, wk)wk

and Qn = I − Pn, and the cone-like sets

Cn
l = {w ∈ H : |Qnw| ! l|Pnw|}.

Definition 1. An inertial manifold M is a finite-dimensional Lipschitz manifold which is
positively invariant

S(t)M ⊂ M, t " 0,

and exponentially attracts all orbits of the flow uniformly on any bounded set U ⊂ H of initial
data

dist(S(t)u0, M) ! CU e−µt , u0 ∈ U, t " 0.

The inertial manifold is said to be asymptotically complete if for any solution u(t), there exists
v0 ∈ M such that

|u(t) − S(t)v0| → 0, t → ∞,

exponentially.

There are several methods for proving the existence of inertial manifolds. The vast majority
of them require some kind of Lipschitz continuity of the nonlinearity N and make use of a
very restrictive spectral gap property of the linear operator A which is usually the Laplacian.
These two conditions yield the strong squeezing property, which, in turn, yields the existence
of an inertial manifold. The inertial manifold is obtained as a graph of a Lipschitz mapping.
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Theorem 2. Suppose that the nonlinearity in (2.11) satisfies the following three conditions:

• It has compact support in H, i.e. supp(N) ⊂ Bρ = {u ∈ H : |u| ! ρ}
• It is bounded, i.e. |N(u)| ! C0 for u ∈ H

• It is globally Lipschitz continuous, i.e. |N(u1) − N(u2)| ! C1|u1 − u2| for u1, u2 ∈ H .

Suppose that the eigenvalues of A satisfy the spectral gap condition, i.e.

λn+1 − λn > 4C1,

for some n ∈ N. Then the strong squeezing property holds, i.e.

• If u1(0) − u2(0) ∈ Cn
l , then u1(t) − u2(t) ∈ Cn

l for t " 0.
• If u1(t0) − u2(t0) 0∈ Cn

l , for some t0 " 0, then |Qn(u1(t) − u2(t))| !
|Qn(u1(0) − u2(0))|e−µt for some µ > 0 and for 0 ! t ! t0.

The strong squeezing property implies the existence of an asymptotically complete inertial
manifold which is the graph of a Lipschitz function ( : PnH → QnH , i.e.

M = G[(] = {p + ((p) : p ∈ PnH }

with

|((p1) − ((p2)| ! l|p1 − p2|.

Restricting (2.11) to M yields the ODE for p = Pnu

dp

dt
+ Ap = PnN(p + ((p))

termed the inertial form.

Different proofs are available in the literature (e.g. [3, 24, 25]). The above result is not the
strongest possible. It is possible to ease the Lipschitz condition to allow for nonlinearities that
contain first-order derivatives of u, resulting, however, in an even more restrictive spectral gap
condition. If we apply this result to the Smoluchowski equation (2.1), it turns out that the
spectral gap condition holds only for the intensities b < 4, in which case M = A = {ψ̄}.
The main idea of this paper is to eliminate the gradient from the nonlinearity of (2.1) through
the transformation u = ψ exp(V/2), and then to apply theorem 2.

3. The main result

3.1. Transformed equation

It can be easily verified that if a normalized, positive function ψ satisfies (2.1), then
u = ψ exp(V/2) = ψ exp(−b〈cos 2ϕ〉ψ cos 2ϕ/4) satisfies the equation

ut = uϕϕ + 1
2

(
Vt + Vϕϕ − 1

2 (Vϕ)2) u. (3.12)

Equation (2.5) for the evolution of V and the fact that Vϕϕ = −4V allow us to rewrite this
equation in the form

ut = uϕϕ + F [ψ]u, (3.13)

where

F [ψ] = −b〈cos 2ϕ〉ψ cos 2ϕ

4

[
b(1 − 〈cos 4ϕ〉ψ ) − 8

]
− b2〈cos 2ϕ〉ψ 2 sin2 2ϕ

4
.
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Observe that F depends only on the first two eigenmodes of ψ . Our next goal is to express ψ

as a function of u in order to view (3.13) as a closed equation in u. To this end, we develop
the following framework. If u ∈ L1(S1), we define the transform

û(x) =
∫ 2π

0
u(ϕ)ex cos 2ϕ dϕ.

Clearly, û ∈ C∞(R). For a ∈ R we define

mau(ϕ) := u(ϕ)ea cos 2ϕ ∈ L1,

and so

m̂au(x) =
∫ 2π

0
u(ϕ)e(x+a) cos 2ϕ dϕ =: τaû(x).

For u = 1/2π let us denote

h(x) =: û(x) = 1
2π

∫ 2π

0
ex cos 2ϕ dϕ.

Note that since

h(n)(x) = 1
2π

∫ 2π

0
cosn(2ϕ)ex cos 2ϕ dϕ

h(n) > 0 for n even and since h(n)(0) = 0 for n odd, we also have h(n)(x) > 0 for x > 0 and
n odd. Remark also that h′′(0) = 1/2.

We define the set

X = ∪a∈R

{
mav : v ∈ L2(S1; R+), v even,

∫ 2π

0
v(ϕ) dϕ < 1

}
.

Obviously, X is an open subset of L2(S1), and for u ∈ X we have

û′(x) =
∫ 2π

0
u(ϕ) cos(2ϕ)ex cos 2ϕ dϕ,

û′′(x) =
∫ 2π

0
u(ϕ) cos2(2ϕ)ex cos 2ϕ dϕ > 0.

Also, if u ∈ X , and u = mav for some a, then û(−a) < 1. Since û is concave up, and
û(x) → ∞ as x → ∞, there exists a unique r ∈ R such that û(r) = 1 and û′(r) > 0. We
now define the mappings

R : X → R,

u 1→ r,

* : X → H,

u 1→ ψ = mR(u)u = ueR(u) cos 2ϕ,

Y1 : X → R+,

u 1→ û′(R(u)) =
∫ 2π

0
u(ϕ)eR(u) cos 2ϕ cos 2ϕ dϕ = 〈cos 2ϕ〉*(u),

Y2 : X → R,

u 1→
∫ 2π

0
u(ϕ)eR(u) cos 2ϕ cos 4ϕ dϕ = 〈cos 4ϕ〉*(u),

and B = 4R/Y1. We will need the following result:

Lemma 1. R, *, Y1, Y2, and B are continuous functions on X .
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Proof. It is enough to prove the continuity of R. First, let us observe that for u, v ∈ X and
r = R(u), s = R(v) with s < r , since v̂ is increasing on [s, ∞), we have v̂(r) > v̂(s) = 1 =
û(r). Since v̂ is concave up, we have

0 < v̂′(s) ! v̂(r) − û(r)

r − s
.

Thus,

r − s ! 1
v̂′(s)

∫ 2π

0
(v(ϕ) − u(ϕ))er cos 2ϕ dϕ ! C(b)

v̂′(s)
‖u − v‖2, (3.14)

and the continuity at v is obvious as long as s < r . To prove the other direction, let vn → u in
L2. This obviously implies v̂n → ûn and v̂n

′ → ûn
′ in L∞. Let r = R(u), sn = R(vn). Due

to the above remark, we assume, without loss of generality, that sn < r for all n ∈ N. In order
to prove the continuity by contradiction we assume that sn 0→ r . Without loss of generality,
we can assume that sn ↑ s0 < r . The above inequality implies

0 < v̂n
′(sn) ! v̂n(r) − û(r)

r − sn

→ 0,

so v̂n
′(sn) → 0. Since v̂n

′(sn) ! v̂n
′(s0) → û′(s0) we have û′(s0) " 0, and therefore

û(s0) < û(r) = 0. This and the fact that v̂n(s0) " v̂n(sn) = 0 yield a contradiction to the fact
that v̂n(s0) → û(s0). #

Corollary 1. Let b > 0 be fixed, and let Xb = B−1{b}. The function

* : Xb → H

is a homeomorphism, where the inverse is given by

*−1(ψ)(ϕ) = ψ(ϕ)e−b〈cos 2ϕ〉ψ cos 2ϕ/4.

As already mentioned, if a positive, normalized function ψ is a solution of (2.1) for some
b > 0, then

u(ϕ) = ψ(ϕ)eV (ϕ)/2 = ψ(ϕ)e−by1 cos 2ϕ/4

satisfies (3.13). Denoting by r = b〈cos 2ϕ〉ψ/4 > 0, we have ψ = u exp(r cos 2ϕ). Then,∫ 2π

0 ψ dϕ = 1 implies û(r) = 1, and multiplying by cos 2ϕ and integrating, we obtain
û′(r) = 4r/b > 0. Using the framework developed earlier, r = R(u), y1 = Y1(u), y2 = Y2(u),
ψ = *(u) and b = B(u). Thus,

F [*(u)] = −R(u) [B(u)(1 − Y2(u)) − 8] cos 2ϕ − 4R(u)2 sin2 2ϕ.

Therefore, u satisfies the closed equation

ut = uϕϕ + F [*(u)]u. (3.15)

On the other hand, if u ∈ X satisfies (3.15), it is immediate that *(u) satisfies (2.1), where
b = B(u) = B(u0) is a quantity preserved by the flow.

3.2. Prepared equation

In order to apply the classical theory, we need the nonlinear term in (3.15) to satisfy a Lipschitz
condition. Since this is not necessarily true, we have to modify equation (3.15) in a way that
preserves its long-term behaviour, i.e. that does not change the attractor nor the convergence
to the attractor. Usually, this is done by modifying the nonlinear term outside of an absorbing
set. Let

C =
{
u ∈ *−1(Hf ) : |*(u)|f <

√
B(u)Y1(u)

}
,

and let Cb = C ∩ Xb, where Hf and |·|f are defined in (2.6) and (2.7).
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Lemma 2. Let 0 < b 0= 8. The functions R|Cb
, *|Cb

, Y1|Cb
, Y2|Cb

and F ◦ *|Cb
are Lipschitz

continuous. In particular, *|Cb
: Cb → Cb is a Lipschitz homeomorphism.

Proof. Let u, v ∈ Cb, and let r = R(u), s = R(v), ψ = *(u), σ = *(v). In particular,

4r

b
=

∫ 2π

0
u(ϕ)er cos 2ϕ cos 2ϕ dϕ,

4s

b
=

∫ 2π

0
v(ϕ)es cos 2ϕ cos 2ϕ dϕ.

Assume without loss of generality that 0 < s < r ! b/4. We first consider the case when
b > 8. Then

4(r − s)

b
=

∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ +

∫ 2π

0
v(er cos 2ϕ − es cos 2ϕ) cos 2ϕ dϕ

=
∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ +

∫ 2π

0
σ (e(r−s) cos 2ϕ − 1) cos 2ϕ dϕ

=
∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ + h′(r − s) +

∫ 2π

0
(σ − ψ̄)(e(r−s) cos 2ϕ − 1) cos 2ϕ dϕ

"
∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ + h′(r − s) − 2π‖σ − ψ̄‖∞h′(r − s)

"
∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ +

(
1 − 8πM0s√

b

)
h′(r − s).

Note that for the last estimate, we used the fact that u and v are in the absorbing cone Cb. Since
h′′′(x) > 0 for x > 0 and since h′′(0) = 1/2, we have

(
1
2

− 4
b

− 4πM0s√
b

)
(r − s) !

∫ 2π

0
(v − u)er cos 2ϕ cos 2ϕ dϕ

! C(b)‖u − v‖2,

and the Lipschitz continuity follows when 0 < s ! s0, for s0 = s0(b) small enough. Inequality
(3.14) implies that for s > s0

r − s ! 1
v̂′(s)

∫ 2π

0
(v(ϕ) − u(ϕ))er cos 2ϕ dϕ ! bC(b)

4s0
‖u − v‖2,

and this completes the proof in the case b > 8.
Now consider the case 0 < b < 8. Similarly as before we have

4(r − s)

b
!

∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ +

(
1 +

8πM0s√
b

)
h′(r − s).

We again exploit the fact that h′′ is increasing on and that h′′(0) = 1/2. In this case, for
0 < ε < 4/b − 1/2 there exists δ > 0, so that for r − s < δ

(
4
b

− 1
2

− 4πM0s√
b

− ε

)
(r − s) !

∫ 2π

0
(u − v)er cos 2ϕ cos 2ϕ dϕ

! Cb‖u − v‖2,

and the Lipschitz continuity follows when 0 < s ! s0, for s0 = s0(b) small enough, and
when r − s < δ. In the case that r − s " δ, we define the sets Ms = R−1[0, s] and
Nr = R−1[r,∞). These are disjoint closed sets, so dist(Ms, Nr) > 0, and since r, s ∈ [0, b/4],
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minr−s!δ dist(Ms, Nr) = Cδ > 0. In this case we have

r − s ! b

Cδ

‖u − v‖2.

The Lipschitz continuity for all s < r follows as before from (3.14). #

We now expand the Lipschitz continuity to a larger set whose interior in L2 contains
U+

b := *−1(ψ+
b ) corresponding to the fixed intensity b 0= 8.

Lemma 3. Let 0 < b 0= 8. Let b ∈ (b1, b2) and 0 < r1 < r+
b . Let B′ = Cb ∪ B, where

B = B−1(b1, b2) ∩ R−1(r1, b2/4). Then the functions R|B′ , *|B′ , Y1|B′ , Y2|B′ , B|B′ and
F ◦ *|B′ are Lipschitz continuous.

Proof. Let us divide B′ into three regions: P = Cb ∩ R−1(0, r1/2], Q = Cb ∩ R−1[r1/2, r1],
and S = B−1(b1, b2) ∩ R−1(r1, b2/4). The previous lemma and inequality (3.14) imply the
Lipschitz continuity on each one of these regions separately. It remains to prove that it still
holds on the union of any of the pairs of these regions. This obviously holds on P ∪ Q ⊂ Cb,
and on Q ∪ S due to (3.14). For the set P ∪ S we use the fact that P ⊂ Mr1/2 and S ⊂ Nr1 ,
where M and N are the sets defined in the proof of the previous lemma, and the conclusion
follows similarly. This concludes the proof. #

We can now define the prepared equation. Note that Cb ⊂ Bρ/2 = {u ∈ L2[0, 2π ] :
u even, ‖u‖2 ! ρ/2}, where ρ = 2eb/4(M0

√
2πb + 1/

√
2π). We define

NP (u) =
{

F [*(u)]u, if u ∈ B′ ∩ Bρ/2,

0, if u ∈ Bc
ρ .

This is clearly a Lipschitz function on (B ∩ Bρ/2) ∪ Bc
ρ . It is a well-known fact from

analysis that there exists a Lipschitz continuous extension of NP defined on the entire
H = {u ∈ L2[0, 2π ] : u even}. We obtain the prepared equation

∂t u + Au = NP (u),

where A = −∂ϕϕ .

3.3. Main theorem

We are now able to prove the existence of the inertial manifold of the Smoluchowski equation.

Theorem 3. Let b ∈ R+\{8}. The Smoluchowski equation on the unit circle with the Maier–
Saupe potential possesses an asymptotically complete inertial manifold Mb.

Proof. The positivity of A and the Lipschitz continuity of NP ensure that the prepared equation
generates a strongly continuous semigroup SP (t). The fact that NP vanishes outside of
Bρ suffices to prove that the prepared equation is dissipative and that it possesses a finite-
dimensional global attractor AP . Also, it can easily be observed that u+

b := *−1(ψ+
b ) ∈ AP .

The complete set of eigenfunctions for the linear operator A is given by wk(ϕ) = cos kϕ,
k = 0, 1, . . ., with eigenvalues λk = k2, k = 0, 1, . . . . If C1 is a Lipschitz constant for
NP , there exists n ∈ N such that λn+1 − λn = 2n + 1 > 4C1, and the spectral gap condition
is satisfied. Theorem 2 applies, and we infer the existence of an asymptotically complete
inertial manifold MP ⊃ AP for the prepared equation given as a graph of a Lipschitz
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function (P :

MP = G[(P ] = {p + (P (p) : p ∈ PnH}.

We now define Mb = Cb ∩ *(MP ). Since *|Cb
: Cb → Cb is a Lipschitz homeomorphism,

it is immediate that Mb is a finite-dimensional Lipschitz manifold. It is positively invariant
under S(t), since both sets Cb and *(MP ) are positively invariant. It remains to prove that
Mb is exponentially attracting and asymptotically complete. Let ψ0 ∈ H and ψ(t) = S(t)ψ0.
Let u(t) = *−1(ψ(t)), t " 0. Since ψ(t) → ψ+

b as t → ∞, u(t) → u+
b as t → ∞. On

the other hand, since MP is exponentially attracting and asymptotically complete, there exists
v0 ∈ MP so that forvP (t) = SP (t)v0 we have‖u(t) − vP (t)‖2 → 0, as t → ∞, exponentially.
Thus, vP (t) → u+

b as t → ∞ as well. Since u+
b ∈ B ∩ Bρ/2, there exists T > 0 so that

vP (t) ∈ B ∩ Bρ/2 for t " T . However, since NP |B∩Bρ/2 = N |B∩Bρ/2 , B(vP (t)) = B(u+
b) = b

for t " T . Therefore, σ (t) := *(vP (t)) ∈ *(MP ), t " T is a solution of (2.1). For some
T ′ " T we have σ (t) ∈ Cb, t " T ′, and therefore σ (t) ∈ M, t " T ′. Since *|Cb

is Lipschitz
continuous, ‖ψ(t) − σ (t)‖2 → 0, as t → ∞, exponentially. This concludes the proof. #
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