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Abstract
Dynamics of concentrated polymer solutions are modelled by a Smoluchowski
equation. At high concentrations, such solutions form liquid crystalline
polymers of nematic structure. We prove that at high intensities the two-
dimensional Smoluchowski equation possesses exactly two steady states,
corresponding to the isotropic and the nematic phases.
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1. Introduction

Rigid rodlike polymers are known to form a liquid crystalline phase of nematic structure
in high-concentration solutions. The scientific interest in such lyotropic liquid crystals has
increased in recent years due to the possibility of spinning high-strength fibres from this highly
ordered phase. The dynamics of such polymers are modelled by the Smoluchowski equation
(due to Doi [3]), involving the probability distribution function, ψ(u), for the orientation of
a test polymer viewed as a cylinder of diameter d, length L and axis parallel to the unit vector u.
This is a nonlinear integro-differential equation phrased on the unit (n−1)-dimensional sphere.
In the case of a spatially homogenous solution, and in the absence of a macroscopic flow and
any external fields, the equation has the form of a Fokker–Planck equation:

∂tψ = �gψ + ∇g · (ψ∇gV ).

Here V represents the mean-field potential accounting for the molecule interactions in the
form of the excluded volume effects due to the steric forces. It was first derived by Onsager in
his seminal work [5]; however, it is accepted that a good qualitative analysis is possible after
truncating, using the Maier–Saupe potential:

V (u, [ψ]) = −b(u ⊗ u) : 〈u ⊗ u〉ψ,
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where the parameter b ∝ cd2L represents the nondimensional intensity of the potential,
c represents the concentration and 〈·〉ψ denotes the average over the distribution ψ .

The static equation, which preceded the kinetic equation historically, was also derived by
Onsager from the formula for the free energy, and it has the form of a Boltzmann distribution
for the mean-field potential:

ψ(u) = Z(ψ)−1 exp(−V (u, [ψ])), (1.1)

where

Z(ψ) =
∫

Sn−1
exp(−V (u, [ψ])) σ (du).

A rigorous treatment of this equation in both two and three dimensions was conducted
in [1, 2]. In two dimensions, in addition to the solution ψ = 1/2π , corresponding to the
isotropic phase, at high intensities, b > 4, Constantin et al obtained an additional solution,
corresponding to the nematic phase. It was proven that (modulo rotation) there can be at
most 2[b/4] solutions. The question as to the exact number of steady states modulo rotation
remained open.

In this paper, we prove using a very simple argument based on ideas of [1] that at intensities
b > 4 we have exactly two steady states: the isotropic and the nematic.

One of the authors of the present paper became aware of the existence of a preprint [4]
in which the same result is claimed, using a different proof based on a continued-fractions
analysis.

2. Main result

We represent the orientation u = (cos φ, sin φ) using a local coordinate φ ∈ [0, 2π ]. We also
represent the probability distribution in terms of φ as ψ(φ). Under equilibrium conditions,
the orientation distribution is symmetric about an orientation called the director, which we
will assume to be (1, 0). This means that ψ is even in φ. One can easily see that under such
a symmetry the potential can be given through

V (φ) = −b

2
〈cos 2φ〉ψ cos 2φ.

Denoting r = (b/2)〈cos 2φ〉ψ , equation (1.1) becomes

ψ(φ) = exp(r cos 2φ)∫ 2π

0 exp(r cos 2φ)
.

Putting these two relations together, we can view the problem of finding steady states as finding
the solutions to the equation [1]:

2r

b
=

∫ 2π

0 cos φ exp(r cos φ) dφ∫ 2π

0 exp(r cos φ) dφ
. (2.1)

For simplicity, for a continuous 2π -periodic function f , we introduce the notation [f ](r) :=∫ 2π

0 f (φ) exp(r cos φ) dφ/
∫ 2π

0 exp(r cos φ) dφ, and the equation becomes

[cos](r) = 2r

b
. (2.2)
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From [1] we adopt the following facts:

Lemma 1. For any analytic 2π -periodic function f (φ), the function [f ](r) is continuous on
[0, ∞), and obeys

lim
r→∞[f ](r) = f (0).

We have

[cos]′(r) = [cos2](r) − [cos]2(r) = [cos − [cos](r)]2(r) > 0, (2.3)

so [cos] is an increasing function such that 0 � [cos](r) → 1 when r → ∞.

Theorem 1. For b � 4 the trivial solution r = 0 is the only solution of equation (2.2).
For b > 4 there are exactly two solutions: the trivial one and a nontrivial one.

Proof. Integrating by parts in the numerator of [cos](r), one arrives at the identity

[cos](r) = r(1 − [cos2](r)), (2.4)

and equation (2.2) becomes

r(1 − [cos2](r)) = 2r

b
.

r = 0 is a solution for all b > 0. Dividing by r , one obtains the equation for the nontrivial
solution:

[cos2](r) = 1 − 2

b
.

It is an easy calculation that [cos2](0) = 1
2 and that limr→∞[cos2](r) = 1. Showing that

y(r) = [cos2](r) is strictly increasing would prove the theorem.
Taking d/dr in (2.4), and using equations (2.3) and (2.4), one obtains a closed ordinary

differential equation on y:

dy

dr
= ry2 − 2

(
r +

1

r

)
y + r +

1

r
= r(y − y1(r))(y − y2(r)), (2.5)

where

1

2
� y1(r) =

√
r2 + 1√

r2 + 1 + 1
� 1 � y2(r) =

√
r2 + 1√

r2 + 1 − 1
.

Observe that from equation (2.4) 1 − 1/r < y(r) � 1. Since y(0) = y1(0) = 1
2 ,

y ′(0) = y ′
1(0) = 0 and y ′′(0) = 1

8 < y ′′
1 (0) = 1

4 , therefore, for small r , y(r) belongs to
the interval ( 1

2 , y1(r)). Since y1(r) is strictly increasing for r > 0, and since, in view of
equation (2.5), y ′(r) vanishes when y(r) = y1(r), it follows that y(r) remains in the interval
( 1

2 , y1(r)) for all r > 0. On this interval dy/dr is positive. This completes the proof. �
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