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ABSTRACT. We investigate a Smoluchowski equation (a nonlin-
ear Fokker-Planck equation on the unit sphere), which arises in
modeling of colloidal suspensions. We prove the dissipativity of
the equation in 2D and 3D, in certain Gevrey classes of analytic
functions.

1. INTRODUCTION

The Smoluchowski equation is an equation describing the temporal evolution of
the distributionψ of directions of rod-like particles in a suspension. The equation
has the form of a Fokker-Planck equation

∂tψ = ∆ψ+ div(ψ gradV),

except that it is nonlinear and it is phrased on the unit sphere (so the Laplacian,
divergence and gradient are suitably modified). One thinks of ψdσ as the pro-
portion of particles whose directions belong to the area element dσ on the unit
sphere. The equation is nonlinear because the mean field potential V depends on
ψ. If this dependence is linear, then the equation has an energy functional, and
its steady solutions are solutions of nonlinear (and typically non-local) equations.
Historically, the steady equation arose first, in the work of Onsager ([14]) concern-
ing the effect of the shape of particles in a suspension on their distribution. The
time dependent kinetic theory ([7]), and the particular type of potential (Maier-
Saupe) we study in this paper are a further development. There are relatively few
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rigorous mathematical papers concerning this equation. In two previous works
([4] and [5]) mostly questions regarding the steady states were discussed. The
Smoluchowski equation is dissipative. This means that the solutions, viewed as
trajectories in a phase space, after a transient time, enter and remain in a bounded
region of phase space. The dissipativity of the Smoluchowski equation is however
a subtle matter. The energy functional is not positive definite in general, and it
cannot be used directly. Instead, the conservation law associated to the equation,

namely the fact that
∫
ψ does not change in time, needs to be used in order to

prove dissipativity. In [4] dissipativity was proved in 2D in a weak phase space,
(a phase space in which it is not clear that the equation is well posed), using a
cancellation special to 2D. The dissipativity in three dimensions was until now
an open problem. In this paper we prove among other things dissipativity in very
strong analytic spaces both in two and three dimensions. The proof of Gevrey
regularity and dissipativity in three dimensions uses a slightly different approach
than the classical method of [9] (see also [1], [2], [8], [10], and [12]) making use
of the special nature of the Fokker-Planck nonlinearity.

2. PRELIMINARIES

We consider the Smoluchowski equation written in local coordinates φ =
(φ1,φ2, . . . ,φn−1) on the unit sphere Sn−1 in Rn as:

(2.1) ∂tψ = 1√g ∂i(e
−V√ggij∂j(eVψ)).

The potential V is given by

(2.2)
V(x, t) = −bxixjSij(t),
Sij(t) :=

∫
Sn−1

xi(φ)xj(φ)ψ(φ, t)σ(dφ)− 1
n
δij,

where xi are Cartesian coordinates in Rn, σ(dφ) = √g dφ the surface area, and
b > 0 is a given parameter representing the intensity of the potential. As a result
of applying the product rule, (2.1) can be written in the form of a Fokker-Planck
equation

(2.3) ∂tψ+Aψ = B(ψ,V),
where

A = −∆g = − 1√g ∂i(
√
ggij∂j)

is the Laplace-Beltrami operator, and

B(ψ,V) := divg(ψ∇gV) = 1√g ∂i(
√
ggij(∂jV)ψ).
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Because of the dependence of V on ψ, the Smoluchowski equation is nonlinear
(quadratic) in ψ.

Regarding the existence, uniqueness and regularity of solutions of (2.3), it is
easy to prove the following theorem (see [4], [5] for the same claim).

Theorem 2.1. Let ψ0 be a nonnegative continuous function on Sn−1. The so-
lutions of (2.3) with initial data ψ(·,0) = ψ0 exist for all nonnegative times, are
smooth, nonnegative and normalized

∫
Sn−1

ψ(φ, t)σ(dφ) =
∫
Sn−1

ψ0(φ)σ(dφ).

In addition, they are analytic for all positive times.

From now on we will choose the normalization

∫
Sn−1

ψ(φ, t)σ(dφ) = 1.

The normalization yields that the matrix S is trace-free (Tr (S) = 0), which implies
that the homogeneous quadratic polynomial V(x, t) is harmonic. This, in turn,
implies that V , restricted to the sphere, is an eigenvector of A corresponding to
the eigenvalue 2n: AV = 2nV . Moreover, one has the following inequality:

−b
(

1− 1
n

)
≤ V(x, t) ≤ b

n
.

In particular, |V(x, t)| ≤ b. The following nontrivial property of the Fokker-
Planck bilinear form B will be crucial in the sequel.

Lemma 2.2. For ψ, χ, V ∈ D(A)

(2.4) (B(ψ,V), χ)g = 1
2

∫
Sn−1
[V(χAψ−ψAχ)−ψχAV]σ(dφ),

where

(u,v)g =
∫
Sn−1

uv σ(dφ)

is the scalar product on L2(Sn−1).
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Proof. Assuming first that ψ, χ, V ∈ C∞(Sn−1) and applying integration by
parts, one has

(B(ψ), χ) =

=
∫
Sn−1

1√g ∂i(
√
ggij∂jVψ)χσ(dφ)

=
∫
∂i(
√
ggij∂jVψ)χ dφn−1

= −
∫ √
ggij∂jVψ∂iχ dφn−1

(
= −

∫
Sn−1

gij∂jVψ∂iχ σ(dφ)
)

=
∫
V∂jψ

√
ggij∂iχ dφn−1 +

∫
Vψ∂j(

√
ggij∂iχ)dφn−1

=
∫
Sn−1

Vgij∂jψ∂iχ σ(dφ)+
∫
Sn−1

Vψ∆gχ σ(dφ)
= −

∫
Sn−1

gij∂iV∂jψχσ(dφ)−
∫
Sn−1

Vχ∆gψσ(dφ)+ ∫
Sn−1

Vψ∆gχ σ(dφ)
=
∫
Sn−1

gij∂iVψ∂jχ σ(dφ)+
∫
Sn−1

∆gVψχσ(dφ)
−
∫
Sn−1

Vχ∆gψσ(dφ)+ ∫
Sn−1

Vψ∆gχ σ(dφ)
= −(B(ψ), χ)+

∫
Sn−1

V(ψ∆gχ − χ∆gψ− 2nψχ)σ(dφ),

and the statement of the lemma follows by the above and the density of C∞(Sn−1)
in D(A). A similar proof is obtained using

∇V ·g ∇ω = 1
2
(∆g(Vω)−ω∆gV − V∆gω)

and integration by parts. ❐

3. THE 2D CASE

When n = 2, the unit circle has one local coordinate φ ∈ [0, π], and x1(φ) =
cosφ, x2(φ) = sinφ, and g11 = g = 1. Thus, in two dimensions, the equation
can be rewritten as

(3.1) ∂tψ− ∂2
φψ = ∂φ(∂φVψ).

The potential V can be written as a function of the local coordinate φ as:

(3.2) V(φ) = −b
2

∫ 2π

0
cos(2(φ− φ̃))ψ(φ̃, t)dφ̃.
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In the following sections, we will use the Fourier Transform to rewrite (3.1) as
a system of ODEs for which we will prove that the solutions belong to certain
Gevrey classes, in which they dissipate, and are real-entire.

3.1. 2D Smoluchowski as an infinite system of ODEs. We expand ψ in
Fourier series as

ψ(φ, t) = 1
2π

∑
j∈Z
ψ̂(j, t)eijφ,

where

ψ̂(j, t) =
∫ 2π

0
e−ijφψ(φ, t)dφ

are the Fourier coefficients. Requiring ψ̂(−j, t) = ψ̂(j, t)∗ will insure that ψ is a
real-valued function. The system (3.1) becomes a system of ODEs

dψ̂
dt
(j, t)+ j2ψ̂(j, t) = bj

2
(
ψ̂(j − 2, t)ψ̂(2, t)− ψ̂(j + 2, t)ψ̂(−2, t)

)
,

and the normalization is equivalent to ψ̂(0, t) = 1 in this setting.
One can easily verify that the evenness of the initial datum will be preserved

by the flow. In terms of Fourier coefficients, this means ψ̂(−j, t) = ψ̂(j, t) for
j ∈ Z. Moreover, ψ̂(2j + 1, t) = 0, for j ∈ Z is preserved by the flow, as well.
Therefore, we can restrict our study to solutions that have the above symmetries,
i.e., solutions of the form

ψ(φ, t) = 1
2π

+ 1
π

∞∑
k=1

yk(t) cos(2kφ),

where

yk(t) = ψ̂(2k, t) =
∫ 2π

0
cos(2kφ)ψ(φ, t)dφ.

The normalization implies y0 = 1 and |yk| ≤ 1. Notice that for such ψ the
potential becomes

V(φ, t) = −b
2
y1(t) cos(2φ).

In this new setting, the 2D Smoluchowski equation can be written in terms of the
Fourier coefficients as an infinite system of ODEs:

(3.3)
y0 = 1

y ′k + 4k2yk = bky1(yk−1 −yk+1), k = 1,2, . . . .
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In [4] the authors have proven that the solutions of the 2D Smoluchowski
equation with nonnegative continuous initial data of the form

(3.4) ψ0(φ) = 1
2π

+ 1
π

∞∑
k=1

yk(0) cos(2kφ)

dissipate in the space H−1/2(S1) according to the inequality

∥∥ψ(t)∥∥2
H−1/2 ≤ b4 + e

−8t∥∥ψ0
∥∥2
H−1/2 .

Also, the existence of one determining mode was proven: If for two solutions

lim
t→∞

|V(1)(0, t)− V(2)(0, t)| = 0,

then
lim
t→∞

‖ψ(1)(t)−ψ(2)(t)‖H−1/2 = 0.

By S(t) we will denote the semi-group of solution operators, i.e., ψ(t) =
S(t)ψ0. The 2D Smoluchowski equation has a compact global attractor A, the
maximal bounded set which satisfies S(t)A = A for all t ∈ R. Thanks to the
existence of one determining mode, or the Gevrey regularity which we will prove
in the next section, one can easily show that the global attractorA is finite dimen-
sional.

3.2. Gevrey regularity and dissipativity in 2D. Let us denote the uniform
state by ψu = 1/2π . Also denote

∥∥ψ∥∥2
L2 := π∥∥ψ−ψu∥∥2

L2(S1) =
∞∑
k=1

y2
k,

∥∥ψ∥∥2
H∗ := 2−2sπ

∥∥ψ−ψu∥∥2
Hs(S1) =

∞∑
k=1

k2sy2
k.

For a positive function f defined on positive integers let us define the following
classes of functions:

Hf :=
{
ψ(φ) = 1

2π
+ 1
π

∞∑
k=1

yk cos(2kφ) |
∞∑
k=1

f(k)
k
y2
k <∞

}
and

Vf :=
{
ψ(φ) = 1

2π
+ 1
π

∞∑
k=1

yk cos(2kφ) |
∞∑
k=1

kf(k)y2
k <∞

}
,
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endowed with the ‘norms’

|ψ|f =
( ∞∑
k=1

f(k)
k
y2
k

)1/2
and ‖ψ‖f =

( ∞∑
k=1

kf(k)y2
k

)1/2
,

respectively. For f that grows at least exponentially with k it is well known that
Hf and Vf are subsets of the set of real analytic functions. Also, for each n ∈ N
there exists a combinatorial constant Mn ∈ (0,∞) depending on f , such that

‖∂nφψ‖L∞ ≤Mn|ψ|f , ψ ∈ Hf .

Theorem 3.1. Consider the equation (3.1) for b > 4 with nonnegative continu-
ous initial data of the form (3.4). Let h(t) = min{t,1}, and let f(k, t) = a2kh(t),
1 < a2 ≤ 1+b−1, or alternatively f(k, t) = [(k− 1)!]2h(t)/b2(k−1). In either case,
a solution ψ dissipates according to the inequality

(3.5)
∣∣ψ(t)∣∣2

f ≤
b + 1

2
+ e−4t∥∥ψ0

∥∥2
H−1/2 , t ≥ 0,

and is real-entire for t > 0. In particular, the ball of radius
√
b in Hf centered at the

uniform state ψu absorbs all trajectories in finite time.

Proof. Multiplying (3.3) by f(k, t)yk/k and summing over k = 1, 2, 3, . . . ,
we obtain the following a priori estimate. The computations are formal, and can
be made rigorous by considering Galerkin approximations (see [3]).

d
2dt

∞∑
k=1

f(k, t)
k

y2
k −

1
2

∞∑
k=1

f ′(k, t)
k

y2
k + 4

∞∑
k=1

kf(k, t)y2
k

= f(1)by2
1 + by1

∞∑
k=1

(f (k+ 1)− f(k))ykyk+1

≤ f(1)by2
1 + b|y1|

√√√√ ∞∑
k=1

kf(k+ 1)y2
k+1

√√√√ ∞∑
k=1

f(k+ 1)
k

y2
k.

For f(k, t) = a2kh(t), 1 < a2 ≤ 1 + b−1, we have f(k + 1) − f(k) = (a2h(t) −
1)f (k), and

d
2dt

∣∣ψ∣∣2
f + 2

∥∥ψ∥∥2
f ≤ b + 1.

For

f(k, t) =
[
(k− 1)!h(t)

bk−1

]2

,



956 P. CONSTANTIN, E.S. TITI & J. VUKADINOVIC

one has b2f(k+ 1) = k2h(t)f (k) ≤ k2f(k), and therefore

d
2dt

∣∣ψ∣∣2
f + 2

∥∥ψ∥∥2
f ≤ b.

In both cases, (3.5) follows. ❐

Remark 3.2. Observe that from y2
k ≤ 1, k = 1, 2, . . . , the dissipativity

follows in Hf for any f for which

f(k) ≤ [(k− 1)!/bk−1]2, k = k0, k0 + 1, . . . ,

for some k0 ∈ Z. In particular, this is true for f(k) = a2k for any a > 1. More-
over, the dissipativity in Gevrey classes implies the dissipativity of the solution and
all its derivatives in L∞:∥∥∂nφψ(t)∥∥2

L2 ≤ M2
n
(
b + e−4t∥∥ψ0

∥∥2
H1/2

)
, t > 0.

In particular
sup
ψ∈A

‖∂nφψ‖L∞ ≤ Mn
√
b,

and
lim
t→∞

inf
ψ∈A

‖∂nφS(t)ψ0 − ∂nφψ‖L∞ = 0.

The Fourier coefficients of the elements of the global attractor A decay according
to:

y2
k ≤ min

1, bk(1+ b−1)−k, bk
[
bk−1

(k− 1)!

]2
 .

Remark 3.3. The quotient zk = yk/y1 satisfies the following ODE:

z′k + 4(k2 − 1)zk = bky1(zk−1 − zk+1)− bzk(1−y2), k = 2,3,4, . . . ,

and therefore

d
2dt

(z2
k)+ 4(k2 − 1)z2

k = bky1(zk−1zk − zkzk+1)− bz2
k(1−y2),

k = 2,3,4, . . . .

As before, for the same choice of f as in Theorem 3.1, multiplying by f(k)zk/k
and summing over k = 2, 3, . . . gives the following inequality:

d
2dt

∞∑
k=2

f(k)
k
z2
k + 2

∞∑
k=2

kf(k)z2
k ≤ b|y2|.
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In particular, |ψ(t)|2f /|V(t,0)|2 is dissipated in time, until eventually

|ψ(t)|f ≤ 2√
b
|V(0, t)|, t ≥ T.

for some T .

In [4] the authors proved the existence of one determining mode. Here we
improve the result leading to the convergence in stronger norms.

Theorem 3.4. Let ψ(j)(φ, t), j = 1, 2, be two solutions of (3.3) corresponding
to nonnegative continuous initial data

ψ(j)0 (φ) =
1

2π
+ 1
π

∞∑
k=1

y(j)k (0) cos(2kφ)

respectively. Let V(j)(φ, t) be the corresponding potential to the solution ψ(j)(φ, t).
Assume that

lim
t→∞

|V(1)(0, t)− V(2)(0, t)| = 0,

i.e.,
lim
t→∞

|y(1)1 (t)−y(2)1 (t)| = 0.

Then for f(k) = a2k, 1 < a2 ≤ 1+ b−1

lim
t→∞

|ψ(1)(t)−ψ(2)(t)|f = 0,

and for every n = 0, 1, 2, . . .

lim
t→∞

‖∂nφψ(1)(t)− ∂nφψ(2)(t)‖L∞ = 0.

Proof. Letψ = ψ(1)−ψ(2) and ψ̄ = 1
2(ψ

(1)+ψ(2)). The Fourier coefficients
are defined accordingly by yk = y(1)k −y(2)k , and ȳk = 1

2(y
(1)
k +y(2)k ), k = 0, 1,

2, . . . . The equation for the difference in terms of the Fourier coefficients reads

(3.6) y0 = 0, y ′k + 4k2yk = bkȳ1(yk−1 −yk+1)

+ bky1(ȳk−1 − ȳk+1), k = 1,2, . . . .

Multiplying (3.6) by f(k)yk/k and summing over k = 1, 2, . . . , we obtain

d
2dt

∣∣ψ∣∣2
f + 4

∥∥ψ∥∥2
f = bȳ1

∞∑
k=1

(f (k+ 1)− f(k))ykyk+1

+ by1

∞∑
k=1

f(k)(ȳk−1 − ȳk+1)yk.
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Similarly as before, and using a Schwartz inequality we obtain

d
2dt

∣∣ψ∣∣2
f + 3

∥∥ψ∥∥2
f ≤ b|y1| ‖ψ‖f

√√√√ ∞∑
k=1

f(k)
k
(ȳk−1 − ȳk+1)2.

Using Young’s inequality,

d
dt
∣∣ψ∣∣2

f +
∥∥ψ∥∥2

f ≤ 16b2y2
1
(
1+ ∣∣ψ(1)∣∣2

f +
∣∣ψ(2)∣∣2

f
)
.

There exists T > 0 so that for t ≥ T

d
dt
∣∣ψ(t)∣∣2

f +
∥∥ψ(t)∥∥2

f ≤ 16b2y2
1 (1+ 2b).

Therefore y1(t) = −2V(0, t)/b → 0 when t →∞ will imply

lim
t→∞

|ψ(t)|f = 0 and lim
t→∞

‖∂nφψ(t)‖L∞ = 0.

This completes the proof. ❐

The following theorem shows that there is a finite number of determining nodes
for the 2D Smoluchowski equation.

Theorem 3.5. There exists n = n(b), so that for any n equidistant points φ0 <
φ2 < · · · < φn = φ0, if

ψ(1)(t,φj)−ψ(2)(t,φj)→ 0, j = 1,2, . . . , n,

then for every ` = 0, 1, 2, . . .

lim
t→∞

‖∂`φψ(1)(t)− ∂`φψ(2)(t)‖∞ = 0.

Proof. Let us write the 2D Smoluchowski equation in the following form:

∂tψ− ∂2
φψ = by1∂φ(sin(2φ)ψ),

and the equation for the difference of two solutions as

∂tψ− ∂2
φψ = bȳ1∂φ(sin(2φ)ψ)+ by1∂φ(sin(2φ)ψ̄).
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Let 0 = φ0 < φ2 < · · · < φn = 2π , such that φi+1 −φi = d. Multiplying the
equation above by ψ and integrating over [φi,φi + d], we obtain

d
2dt

∫φi+d
φi

|ψ|2 +
∫φi+d
φi

|ψφ|2 −
[
ψφψ

]φi+d
φi =

= bȳ1
[

sin(2φ)ψ2]φi+d
φi −bȳ1

∫φi+d
φi

sin(2φ)ψψφ+by1

∫φi+d
φi

∂φ(sin(2φ)ψ̄)ψ

≤ bȳ1
[

sin(2φ)ψ2]φi+d
φi +b

∫φi+d
φi

|ψψφ|+b(‖ψ̄φ‖L∞ +2‖ψ̄‖L∞)
∫φi+d
φi

|y1ψ|

≤ bȳ1
[

sin(2φ)ψ2]φi+d
φi + 1

2

∫φi+d
φi

|ψφ|2 + b
2

2

∫φi+d
φi

|ψ|2

+ b3(4M2
0 +M2

1 )
∫φi+d
φi

|ψ|2 + d
2
y2

1 ,

where the constants M0 and M1 are as in Remark 3.2. Observe that∫φi+d
φi

|ψ|2 ≤ 2d2
∫φi+d
φi

|ψφ|2 + 2d|ψ(φi)|2.

Now

d
2dt

∫φi+d
φi

|ψ|2 +
(

1
4d2 −

b2(1+ 2M1b + 8M0b)
2

)∫φi+d
φi

|ψ|2

≤ [ψφψ]φi+dφi + bȳ1
[

sin(2φ)ψ2]φi+d
φi + 1

2d
|ψ(φi)|2 + d2y

2
1 .

Choosing d small enough that

1
4d2 −

b2(1+ 2M2
1b + 8M2

0b)
2

> 2π2,

we obtain

d
2dt

∫φi+d
φi

|ψ|2 + 2π2
∫φi+d
φi

|ψ|2

≤ [ψφψ]φi+dφi + bȳ1
[

sin(2φ)ψ2]φi+d
φi + 1

2d
|ψ(φi)|2 + d2π

∫ 2π

0
|ψ|2.

Summing the above equations for i = 0, 1, 2, . . . , n− 1, we obtain

d
dt

∫ 2π

0
|ψ|2 + 2π2

∫ 2π

0
|ψ|2 ≤ n

2π

n−1∑
i=0

|ψ(φi)|2.
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Therefore
lim
t→∞

‖ψ(1)(t)−ψ(2)(t)‖L2 = 0.

In particular y1 → 0, and the theorem follows. ❐

4. THE 3D CASE

When n = 3, the local coordinates on S2 areφ = (θ,ϕ), and one has x1(θ,ϕ) =
sinθ cosϕ, x2(θ,ϕ) = sinθ sinϕ, and x2(θ,ϕ) = cosθ. Also, g11 = 1, g22 =
sin−2 θ, g12 = g21 = 0, and √g = sinθ. In terms of the local coordinates,

Aψ = −∆gψ = −( 1
sinθ

∂θ(sinθ∂θψ)+ 1
sin2 θ

∂2
ϕψ

)
,

B(ψ) = 1
sinθ

∂θ(sinθ(∂θV)ψ)+ 1
sin2 θ

∂ϕ((∂ϕV)ψ),

and

V(ϕ,θ, t) =
∫ π

0

∫ 2π

0
(sinθ sin θ̃ cos(ϕ−ϕ̃)+cosθ cos θ̃)2ψ(ϕ̃, θ̃, t)dϕ̃ dθ̃− 1

3
.

In the following section, we will use the expansion of solutions in spherical har-
monics in order to prove the regularity and dissipativity of solutions in certain
Gevrey classes.

4.1. Spherical harmonics. Let Pk denote the Legendre polynomial of degree
k. For k = 0, 1, 2, . . . and j = 0, ±1, ±2, . . . , ±k let us define

Yjk(θ,ϕ) = CjkeijϕPjk(cosθ),

where

Cjk =
[

2k+ 1
4π

(k− |j|)!
(k+ |j|)!

]1/2

,

Pjk(x) = (1− x2)j/2
djPk
dxj

(x), j = 0,1,2, . . . , k,

and

Pjk = P−jk , j = −1,−2, . . . ,−k.

The following are well known facts about the operator A = −∆g (see [13]):

(1) Each Yjk is an eigenvector of A corresponding to the eigenvalue λk = k2 + k:

AYjk = λkY jk .
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(2) The set {Yjk | k = 0,1,2, . . . ; j = 0,±1,±2, . . . ,±k} forms an orthonormal
basis in L2(S2); in particular, for each ψ ∈ L2(S2) there is a representation

ψ =
∞∑
k=0

k∑
j=−k

ψjkY
j
k , where ψjk =

∫
S2
ψY−jk σ(dφ).

Observe that ψ is a real-valued function if and only if ψ−jk = ψ̄jk, and ψ is an
even function in variable ϕ, if and only if ψ−jk = ψjk. For the simplicity of
notation, let us also denote Yjk = 0 and ψjk = 0 for |j| > k.

(3) For each k = 0, 1, 2, . . . , we have the point-wise identity

(4.1)
k∑

j=−k
|Yjk(θ,ϕ)|2 =

2k+ 1
4π

.

(4) If
∫
S2
Ymn Y

j
kY

−β
α 6= 0, then all of the following must hold:

(a) β =m+ j,
(b) α ≤ n+ k,
(c) k ≤ n+α,
(d) n ≤ α+ k,
(e) α+n+ k is even.

4.2. Gevrey regularity. Let (ψ,V) be a solution of (2.3) for n = 3. Let
ψ = ∑∞

k=0
∑k
j=−k ψ

j
kY

j
k be the expansion of ψ in spherical harmonics. The nor-

malization yields

ψ0
0 =

1√
4π

and

(4.2) |ψjk| ≤
∫
S2
ψ|Y−jk |σ(dφ) ≤

√
2k+ 1

4π
.

Since V is an eigenvector corresponding to the eigenvalue λ2 = 6,

V =
2∑

m=−2

VmYm2 ,

where Vm =
∫
S2
VY−m2 σ(dφ). Also

(4.3) |Vm| ≤ b
∫
S2
|Y−m2 |σ(dφ) ≤ b

√
20π.
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Observe also that the equation (2.3) for n = 3 preserves the evenness in ϕ. We
will only consider solutions with this symmetry, i.e., solutions for which ψ−jk =
ψjk, and V−j = Vj .

Lemma 4.1. Let F = f(A) = f(−∆g) and G = g(A) = g(−∆g) be two
spectral operators defined by

Fψ =
∞∑
k=0

f(λk)
k∑

j=−k
ψjkY

j
k ,

Gψ =
∞∑
k=0

g(λk)
k∑

j=−k
ψjkY

j
k ,

where f and g are positive functions defined on the set of eigenvalues of A. Then for
ψ ∈ D(F)∩D(G)
∫
S2
VFψGψσ(dφ) =

=
2∑

m=−2

∞∑
k=0

k∑
j=−k

f (λk)g(λk)Vmψ
j
kψ

−(m+j)
k

∫
S2
Ym2 Y

j
kY

−(m+j)
k σ(dφ)

+
2∑

m=−2

∞∑
k=0

k∑
j=−k

[f (λk)g(λk+2)+ f(λk+2)g(λk)]

× Vmψjkψ−(m+j)k+2

∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ).

Proof. Since

∫
S2
VFψGψσ(dφ) =

=
2∑

m=−2

∞∑
k=0

k∑
j=−k

∞∑
α=0

α∑
β=−α

Vmf(λk)ψ
j
kg(λα)ψ

−β
α

∫
S2
Ym2 Y

j
kY

−β
α σ(dφ),

and since ∫
S2
Ym2 Y

j
kY

−β
α σ(dφ) 6= 0

implies β =m+ j, and α = k+ 2, or k = α+ 2, or α = k, we have
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∫
S2
VFψGψσ(dφ) =

=
2∑

m=−2

∞∑
k=0

k∑
j=−k

Vmf(λk)ψ
j
kg(λk)ψ

−(m+j)
k

∫
S2
Ym2 Y

j
kY

−(m+j)
k σ(dφ)

+
2∑

m=−2

∞∑
k=0

k∑
j=−k

Vmf(λk)ψ
j
kg(λk+2)ψ

−(m+j)
k+2

∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

+
2∑

m=−2

∞∑
α=0

α∑
β=−α

Vmf(λα+2)ψ
β−m
α+2 g(λα)ψ

−β
α

∫
S2
Ym2 Y

β−m
α+2 Y

−β
α σ(dφ).

Since we assume that V−m = Vm, and ψ−jk = ψjk,
2∑

m=−2

∞∑
α=0

α∑
β=−α

Vmf(λα+2)ψ
β−m
α+2 g(λα)ψ

−β
α

∫
S2
Ym2 Y

β−m
α+2 Y

−β
α σ(dφ) =

=
2∑

m=−2

∞∑
α=0

α∑
β=−α

V−mf(λα+2)ψ
β+m
α+2 g(λα)ψ

−β
α

∫
S2
Y−m2 Yβ+mα+2 Y

−β
α σ(dφ)

=
2∑

m=−2

∞∑
α=0

α∑
β=−α

Vmf(λα+2)ψ
−(β+m)
α+2 g(λα)ψ

β
α

∫
S2
Ym2 Y

−(β+m)
α+2 Yβα σ(dφ),

and the proof follows. ❐

The following lemma establishes important estimates regarding the nonlinear term,
and it will be used to prove the Gevrey regularity and dissipativity of solutions that
are even in the ϕ variable.

Lemma 4.2. Let f(λk) = a2k for a ≥ 1, and

Fψ =
∞∑
k=0

f(λk)
k∑

j=−k
ψjkY

j
k .

There exists C > 0, independent of a and b, and Cb > 0 depending on b only, such
that for any ψ even in ϕ, for which

∑∞
k=1 k2a2k∑k

j=−k |ψjk|2 <∞, we have

(4.4) |(B(ψ,V),Fψ)g| ≤ Ca4b
(
1+

∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2

)

+ C(a4 − 1)b
∞∑
k=0

k2a2k
k∑

j=−k
|ψjk|2,
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and if 1 ≤ a4 ≤ 1+ (4Cb)−1, then also

|(B(ψ,V),Fψ)g| ≤ Cb + 1
2
(Aψ,Fψ).

Proof. Due to Lemma 2.2,

(B(ψ,V),Fψ)g = 1
2

∫
S2
V (FψAψ−ψAFψ− 6ψFψ) σ(dφ).

Therefore, by Lemma 4.1 and the fact that λk+2 − λk = 4k+ 6,

(B(ψ,V),Fψ)g =

= −3
2∑

m=−2

∞∑
k=0

k∑
j=−k

f (λk)Vmψ
j
kψ

−(m+j)
k

∫
S2
Ym2 Y

j
kY

−(m+j)
k σ(dφ)

− 3
2∑

m=−2

∞∑
k=0

k∑
j=−k

(f (λk)+ f(λk+2))Vmψ
j
kψ

−(m+j)
k+2

×
∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

− 1
2

2∑
m=−2

∞∑
k=0

k∑
j=−k

(λk+2 − λk)(f (λk+2)− f(λk))Vmψjkψ−(m+j)k+2

×
∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

= −3
2∑

m=−2

∞∑
k=0

k∑
j=−k

f (λk)Vmψ
j
kψ

−(m+j)
k

∫
S2
Ym2 Y

j
kY

−(m+j)
k σ(dφ)

− 6
2∑

m=−2

∞∑
k=0

k∑
j=−k

f (λk+2)Vmψ
j
kψ

−(m+j)
k+2

∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

− 2
2∑

m=−2

∞∑
k=0

k∑
j=−k

k(f (λk+2)− f(λk))Vmψjkψ−(m+j)k+2

×
∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ) =
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= −3a4

2π

2∑
m=−2

Vmψ−m2

− 3
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2kVmψjkψ
m+j
k

∫
S2
Ym2 Y

j
kY

−(m+j)
k σ(dφ)

− 6
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2k+4Vmψjkψ
−(m+j)
k+2

∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

− 2(a4 − 1)
2∑

m=−2

∞∑
k=1

k∑
j=−k

ka2kVmψjkψ
m+j
k+2

×
∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ).

The following estimates are obtained using (4.2), (4.1), and (4.3). We have

∣∣∣∣− 3
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2kVmψjkψ
m+j
k

∫
S2
Ym2 Y

j
kY

−(m+j)
k σ(dφ)

∣∣∣∣
≤ 15b

2∑
m=−2

∞∑
k=1

k∑
j=−k

a2k|ψjkψm+jk |
∫
S2
|YjkY−(m+j)k |σ(dφ)

≤ 15b
∞∑
k=0

(2k+ 1)a2k
k∑

j=−k
|ψjk|2 ≤ 60b

∞∑
k=0

ka2k
k∑

j=−k
|ψjk|2,

and

∣∣∣∣− 6
2∑

m=−2

∞∑
k=1

k∑
j=−k

a2k+4Vmψjkψ
−(m+j)
k+2

∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

∣∣∣∣
≤ 30b

2∑
m=−2

∞∑
k=1

k∑
j=−k

a2k+4|ψjkψm+jk+2 |
∫
S2
|YjkY−(m+j)k+2 |σ(dφ)

≤ 60b
( ∞∑
k=1

(k+ 2)a2k+4
k∑

j=−k
|ψjk|2 +

∞∑
k=1

(k+ 2)a2k+4
k∑

j=−k
|ψjk+2|2

)

≤ 60b(3a4 + 1)
∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2,
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and also

∣∣∣∣− 2(a4 − 1)
2∑

m=−2

∞∑
k=1

k∑
j=−k

ka2kVmψjkψ
m+j
k+2

∫
S2
Ym2 Y

j
kY

−(m+j)
k+2 σ(dφ)

∣∣∣∣ ≤
≤ 10b(a4 − 1)

2∑
m=−2

∞∑
k=1

k∑
j=−k

ka2k|ψjkψm+jk+2 |
∫
S2
|YjkY−(m+j)k+2 |σ(dφ)

≤ 20b(a4−1)
( ∞∑
k=1

k(k+2)a2k
k∑

j=−k
|ψjk|2+

∞∑
k=0

k(k+2)a2k
k∑

j=−k
|ψjk+2|2

)

≤ 20b(a4−1)
(
3
∞∑
k=1

k2a2k
k∑

j=−k
|ψjk|2+

1
a4

∞∑
k=0

(k+2)2a2k+4
k∑

j=−k
|ψjk+2|2

)

≤ 80b(a4 − 1)
∞∑
k=1

k2a2k
k∑

j=−k
|ψjk|2.

The estimate (4.4) follows. For any a, which satisfies 1 ≤ a4 ≤ 1+ (4Cb)−1, and
an integer k0 such that 4Ca4b ≤ k0 < 4Ca4b+ 1, and by virtue of (4.2), one has

|(B(ψ),Fψ)g| − 1
2
(Aψ,Fψ)g ≤

≤ Ca4b + Ca4b
∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2 −

1
4

∞∑
k=1

k2a2k
k∑

j=−k
|ψjk|2

≤ Ca4b + Ca4b
∞∑
k=1

ka2k
k∑

j=−k
|ψjk|2 − Ca4b

∞∑
k=k0

ka2k
k∑

j=−k
|ψjk|2

= Ca4b + Ca4b
k0−1∑
k=1

ka2k (2k+ 1)2

4π
≤ Cb. ❐

The next theorem is an application of Lemma 4.2 for the choice of a = 1, and
establishes the dissipation of solutions in L2(S2).

Theorem 4.3. Let ψ0 be a nonnegative continuous function on S2. Then the
unique solution ψ(φ, t) of (2.3) for n = 3 with initial datum ψ0 dissipates in
L2(S2) according to the inequality

∥∥ψ(t)∥∥2
L2 ≤ C1b5 + e−t‖ψ0‖L2 , t > 0,

where C1 is a constant independent of b.
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Proof. Applying Lemma 4.2 for a = 1 one obtains

d
2dt

(ψ,ψ)g + (Aψ,ψ)g = (B(ψ),ψ)g ≤ Cb + 1
2
(Aψ,ψ)g,

thus
d

2dt
∥∥ψ∥∥2

L2 + 1
2
‖ψ‖L2 ≤ Cb.

One can easily see that Cb = C1b5 for a constant C1 independent of b, and the
theorem follows. ❐

The following theorem establishes the regularity and the dissipativity of solutions
in a Gevrey class. The idea of the proof is inspired by the work of [9] and its
generalization in [1], [2] and [8]. The proof presented here is formal and can be
easily made rigorous by applying the Galerkin procedure.

Theorem 4.4. Letψ0 be a nonnegative continuous function on S2, and ψ(φ, t)
the unique solution of (2.3) (n = 3) corresponding to that initial datum. Let a be
such that 1 < a4 ≤ min{e,1+ (4Cb)−1}, and let h(t) = min{t,1}. Then

∞∑
k=1

a2kh(t)
k∑

j=−k
|ψjk|2 ≤ 4Cb + e−t/2‖ψ0‖L2 , t ≥ 0.

Proof. Let

F(t)ψ(t) =
∞∑
k=0

a2kh(t)
k∑

j=−k
ψjk(t)Y

j
k ,

F′(t)ψ(t) = 2 lnah′(t)
∞∑
k=0

ka2kh(t)
k∑

j=−k
ψjk(t)Y

j
k .

Multiplying the equation (2.3) by F(t)ψ and integrating over S2 one obtains

d
2dt

(ψ,F(·)ψ)g − 1
2
(ψ,F′(·)ψ)g + (Aψ,F(·)ψ)g = (B(ψ),F(·)ψ)g,

which together with Lemma 4.2 yields

d
2dt

∞∑
k=0

a2kh(t)
k∑

j=−k
|ψjk|2 − lnah′(t)

∞∑
k=0

ka2kh(t)
k∑

j=−k
|ψjk|2

+ 1
2

∞∑
k=0

k2a2kh(t)
k∑

j=−k
|ψjk|2 ≤ Cb,
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thus
d

2dt

∞∑
k=0

a2kh(t)
k∑

j=−k
|ψjk|2 +

1
4

∞∑
k=0

k2a2kh(t)
k∑

j=−k
|ψjk|2 ≤ Cb,

and the theorem follows. ❐

Remark 4.5. As in the 2D case, the dissipativity in Gevrey classes implies the
dissipativity of ψ and its partial derivatives in L∞(S2). In particular, the global at-
tractorA exists in this case as well, it is finite-dimensional, and there are constants
M̃(n, b), depending on n and b only, such that

sup
ψ∈A

‖∇ngψ‖L∞ ≤ M̃(n, b),

and
lim
t→∞

inf
ψ∈A

‖∇ngS(t)ψ0 −∇ngψ‖L∞ = 0.

Remark 4.6. As a result of the Gevrey regularity one can easily prove that the
Galerkin scheme, based on the eigenfunctions of the Laplacian (in the 2D case)
and the Laplace-Beltrami operator (in the 3D case), converges exponentially fast
to the exact solution of the underlying equation (see, e.g., [6] and [11]).
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