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The global behavior of the periodic 2D viscous Camassa–Holm equations is
studied. The set of initial data for which the solution exists for all negative
times and grows backwards with an exponential rate no greater then some
given value is observed and proved to possess some interesting richness and
density properties.
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1. INTRODUCTION

In this paper we consider the two dimensional viscous Camassa–Holm
equations

d
dt
v− n Dv+(u ·N) v+vj Nuj+Np=f

v=u−a2 Du

N · u=0

(1.1)

where f is a time independent force, and n > 0 (representing the kinematic
viscosity) and a > 0 are given parameters. The functions u: R2Q R2,
v: R2Q R2 and p: R2Q R are unknowns representing velocity, momentum,
and modified pressure, respectively. We will refer to the equations (1.1) as
(VCHE).
(VCHE) is a generalization of an one-dimensional equation derived by

Camassa and Holm (1993), which describes unidirectional surface waves in



shallow water. Holm et al. (1998) generalized the equations to n dimensions,
the so called ideal Camassa–Holm equations or Euler alpha model. The
parameter a is interpreted as the typical mean amplitude of the fluctuations.
Since v in (1.1) represents a momentum, it is plausible to let viscosity

act to diffuse this momentum. Chen et al. (1999) proposed the viscous
variant of the Camassa–Holm equations in which an artificial viscosity
term n Dv is introduced into the system. The (VCHE) closely resemble the
Navier–Stokes equations (NSE):

d
dt
u− n Du+(u ·N) u+Np=f

N · u=0

and even coincide with them for a=0. For this reason they are also known
as Navier–Stokes-a model.
In this paper we are interested in the backwards behavior of the solu-

tions of the (VCHE). We will study the set G of initial data u0 for the
(VCHE) for which the solution S(t) u0 exists for all times t ¥ R and the rate
of the backwards growth for those solutions. The backwards behavior was
studied for other related partial and ordinary differential equations with a
similar structure as the (VCHE) and the (NSE). Some examples are the
Kuramoto–Sivashinsky equation (see Kukavica (1992)), and the Ginzburg–
Landau equation (see Doering et al. (1988)). For a global solution of those
equations it was shown that if it grows at most exponentially when tQ −.,
then it is necessarily uniformly bounded. Constantin et al. (1997) studied
the backwards behavior for the periodic 2D Navier–Stokes equations and
proved that it demonstrates more similarity with the linear case. For
example, it was proved that the set of initial data for which the solution
exists for all negative times and grows at most exponentially when tQ −. is
dense in the phase space of the (NSE). In this paper we will show that the
backwards behavior for the periodic 2D (VCHE) resembles the (NSE) case.
The major object of study in this paper is the set

Mn=A 2 3u0 ¥ G0A : lim
tQ −.

|A1/2(I+a2A) S(t) u0 |2

|(I+a2A)1/2 S(t) u0 |2
[ ln(1+a2ln)4

where | · | denotes the usual L2 norm, A denotes the Stokes operator, and
0 < l1 < l2 < · · · its distinct eigenvalues. A stands for the global attractor
for the (VCHE). For convenience, we will refer to the quotient in the defini-
tion ofMn as the vorticity quotient. It emerges naturally from the ‘‘energy’’
and ‘‘enstrophy’’ balance equations for the (VCHE) and is an analogue of
the Dirichlet quotient for the (NSE), which was studied in the paper by
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Constantin et al. (1997). Most of the results on Dirichlet quotients have an
analogue in the present paper, but there are differences in the proofs due to
the different structure of the nonlinear terms in the (VCHE). Equivalently,
we can define the setMn in the following way:

Mn={u0 ¥ G: |(I+a2A)1/2 S(t) u0 |=O(enln |t|) as tQ −.}

In other words,Mn consists of precisely those initial data, for which the solu-
tion S(t) u0 exists for all t ¥ R, and its kinetic energy |(I+a2A)1/2 S(t) u0 |2

increases with an exponential growth rate no greater then nln when tQ −..
In Section 2 we recall some known facts about the (VCHE), and we

rewrite it in its functional form. We derive the ‘‘energy’’ and ‘‘enstrophy’’
balance equations and some basic inequalities that emerge from them. In
this section, we also define the set G consisting of initial data for which
there exists a global solution, as well as the setsMn. In Section 3 we prove
some useful properties of the sets Mn. The central result of this section is
Theorem 1, which enables us to control the vorticity quotients of a solution
of (VCHE) by controlling the energy of the solution from below. This
result is a useful technical tool and will be used to obtain all the other
results. Another basic result of this section is Theorem 3 that provides us
with a tool for producing global solutions with certain properties. In
Section 4 we prove that the sets Mn are rich in the sense that PnMn=PnH
(H being a suitable Hilbert space defined in Section 1, and PnH being the
spectral space of A corresponding to the eigenvalues l1, l2,..., ln). In Sec-
tion 5 we use this result to prove some density properties of the setsMn. In
Theorem 6 we prove that the set of initial data for which there exists a
global solution, which grows at most exponentially, is dense in H. We
conclude the paper with a result in which we show that the eigenvectors of
the Stokes operator A corresponding to ln for some n ¥N belong to the
closure of scaled set Mn, even in respect with the stronger ‘‘energy’’ norm
of the (VCHE). The analogue of this result for the (NSE) has been proved
by C. Foias and I. Kukavica, and is yet to be published.

2. PRELIMINARIES

We consider the two dimensional viscous Camassa–Holm equations

d
dt
v− n Dv+(u ·N) v+C

2

j=1
vj Nuj+Np=f

v=u−a2 Du

N · u=0
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where f ¥ L2(W)2 (which is W-periodic and >W f=0) is a given function
representing body forcing, n > 0 is the constant viscosity, and a > 0 is a
given parameter. u: R2Q R2, v: R2Q R2 and p: R2Q R, are unknown
functions representing velocity, vorticity and modified pressure, respec-
tively. We supplement the system with the periodic boundary condition

u(x+Lej)=u(x), x ¥ R2, 1 [ j [ 2

and

F
W
u=0

where L > 0, W=[0, L]2, and (ej)2j=1 is the canonical basis in R2. Since we
are interested in a functional setting for these equations, we need to intro-
duce suitable functional spaces. First, we define

V=3u : u is a vector valued W-periodic trigonometric
polynomial, N · u=0, F

W
u=04

We define H and V to be closures of V in the (real) Hilbert spaces L2(W)2

and H1(W)2, respectively. H and V are also (real) Hilbert spaces with res-
pective scalar products

(u, v)=C
2

j=1
F
W
ujvj, u, v ¥H

and

((u, v))=C
2

j=1
F
W

“uj
“xk
“vj
“xk
, u, v ¥ V

The corresponding norms are |u|=(u, u)1/2 for u ¥H and ||u||=((u, u))1/2
for u ¥ V respectively. We denote the dual of V by VŒ. By the Rellich
embedding theorem, the natural inclusions i1: VQH and i2: HQ VŒ are
compact.
We denote the orthogonal projection (called the Leray-Projector) on

the space H by PL: L2(W)2QH; observe that H+={Np : p ¥H1(W)} is
the orthogonal complement of H in L2(W). By A=−PLD we denote the
Stokes operator with domain D(A)=H2(W)2 5 V. A is a selfadjoint positive
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operator with compact inverse. The eigenvalues of A are of the form
(k21+k22)(2p/L)2 where k1, k2 ¥N0, and k21+k22 ] 0. We can arrange them
in increasing order

12p
L
22=l1 < l2 < · · ·

Note that

lim
nQ.
ln=. (2.1)

and

ln+1−ln \ l1

For the purposes of this paper, an important property is also

lim sup
nQ.

(ln+1−ln)=. (2.2)

We define Pn to be the orthogonal projection in H on the spectral space of
A corresponding to the eigenvalues l1, l2,..., ln; also let Qn :=I−Pn. Inte-
gration by parts gives

||u||=|A1/2u|, u ¥ V

We also define

[u] :=|(I+a2A)1/2 u|, u ¥ V

and

|[u]| :=|A1/2(I+a2A)1/2 u|, u ¥ D(A)

We will use the Poincaré inequality

||u||2 \ l1 |u|2, u ¥ V

and, similarly,

[u]2 \ (1+a2l1) |u|2, u ¥ V

Regarding the nonlinear terms that appear in the Camassa–Holm
equations, we introduce the following bilinear forms:

B(u, v) :=PL((u ·N) v), u ¥H, v ¥ V
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and

B*(u, v) :=PL 1 C2
j=1
vj Nuj 2 , u ¥ V, v ¥H

By integrating by parts we obtain following important identities:

(B(u, v), w)=−(B(u, w), v), u ¥H, v, w ¥ V (2.3)

and

(B(u, v), Av)=(B(Av, v), u), u ¥H, v ¥ D(A) (2.4)

The connection between B and B* is given by the identity

(B*(v, w), u)=(B(u, v), w), u ¥H, v, w ¥ V (2.5)

Now we can rewrite the viscous Camassa–Holm equations in the functional
form

v̇+nAv+B(u, v)+B*(u, v)=f

v=(I+a2A) u
(2.6)

where PLf is replaced by f ¥H. Observe that the term containing modified
pressure doesn’t occur in this equation since PL(Np)=0. This new func-
tional version of the (VCHE) is understood in VŒ. Classical theorems imply
that, for every u0 ¥ V, there exists a unique solution u(t)=S(t) u0 for t \ 0
of (2.6), which satisfies u(0)=u0. If the solution u(t) also exists for
t ¥ [−t0, 0] for some t0 > 0, then it is still uniquely determined by u0, and
we still denote it by S(t) u0. It is known that u ¥ L.loc((0,.) : H3(W)). Also,
for any t0 > 0, the solution operator S(t0): VQ V is continuous.
Our aim is now to find balance equations for (VCHE), that do not

involve nonlinear terms. To this end, observe that for u, v ¥ V

(B(u, v), u)+(B*(u, v), u)=(B(u, v), u)+(B(u, u), v)

=(B(u, v), u)−(B(u, v), u)=0

and for u ¥ V, v ¥ D(A)

(B(u, v), Av)+(B*(u, v), Av)=(B(u, v), Av)+(B(Av, u), v)

=(B(u, v), Av)−(B(Av, v), u)=0
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Therefore, if we multiply (VCHE) by u and Av respectively, we obtain the
following equations:

1
2
d
dt
[u]2+n(Av, u)=(f, u) (2.7)

and

1
2
d
dt
||v||2+n(Av, Av)=(f, Av) (2.8)

These equations yield, respectively, the following inequalities

d
dt
[u]2+nl1[u]2 [

|f|2

nl1
(2.9)

and

d
dt
||v||2+nl1 ||v||2 [

|f|2

n
(2.10)

Observe that from the relation (2.9), it follows that tQ [u( · )] is a decreas-
ing function as long as [u(t)] > |f|/nl1. If u is a solution of (VCHE)
defined on some interval [t0,.), the Gronwall lemma gives

[u(t)]2 [ [u(t0)]2 e−nl1(t− t0)+
|f|2

n2l21
(1−e−nl1(t− t0)), t \ t0 (2.11)

and

||v(t)||2 [ ||v(t0)||2 e−nl1(t− t0)+
|f|2

n2l1
(1−e−nl1(t− t0)), t \ t0 (2.12)

Also, if the solution is defined on [t, t0] we have

[u(t)]2 \ [u(t0)]2 enl1(t0− t)−
|f|2

n2l21
(enl1(t0− t)−1) (2.13)

Observe that, if the solution is defined on (−., t0], the integral > t0−. 1
[u(t)]2 dt

exists.
Every solution u(t)=S(t) u0 of the (VCHE) for an initial datum u0 ¥ V,

which is defined for all t ¥ R, is called a global solution. u0 belongs to a
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trajectory of a global solution if and only if u0 ¥4t \ 0 S(t) V. Therefore, we
define

G :=3
t \ 0
S(t) V (2.14)

to be the set of initial data, for which there exists a global solution. The
(VCHE) have a global attractor

A={u0 ¥ G : lim sup
tQ −.

[S(t) u0] <.}

=3u0 ¥ G : [S(t) u0] [
|f|
nl1
, t ¥ R4

A is S( · )-invariant, meaning that S(t)A=A for t \ 0. Also, it is a
nonempty, compact, connected subset of V. Moreover, every S( · )-invariant
set containingA is connected.
For 0 < o < l1/2 let us define the sets

Mn, o :=A 2 3u0 ¥ G0A : lim sup
tQ −.

||(I+a2A) S(t) u0 ||2

[S(t) u0]2

[ (ln+o)(1+a2(ln+o))4
Some obvious properties of the setsMn, o are

S(t)Mn, o=Mn, o, t \ 0, n ¥N

and

A …M1, o …M2, o … · · ·

In the next section, after proving a crucial theorem, we’ll be able to prove
some nontrivial properties of these sets. For example, we will prove that
the setMn, o doesn’t really depend on o. This enables us to define a new set
Mn asMn, o for an arbitrary choice of 0 < o < l1/2.
For later purposes let us also define the following sets for n ¥N:

Cn, o :=3u0 ¥ A−1V : ||(I+a2A) u0 ||2[u0]2
[ (ln+o)(1+a2(ln+o))4
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3. SOME PROPERTIES OF THE SETSMn, o

In this section, we will prove some properties of the setsMn, o. To this
end, we will need the following crucial result:

Theorem 1. Let T > 0 and n ¥N. Let u be a solution of (VCHE) for
the initial datum u0 ¥ Cn, o and let v0 :=(I+a2A) u0. If

[u(t)] >
|f|
no
, t ¥ [0, T) (3.1)

then

||v(t)||2

[u(t)]2
[ (ln+o)(1+a2(ln+o)), t ¥ [0, T]

or, in other words, u(t) ¥ Cn, o for t ¥ [0, T].

Proof. Let us denote

ũ :=
u
[u]
, ṽ :=

v
[u]

Applying (2.7) and (2.8) we obtain

1
2
d
dt
||v||2

[u]2
=
1
[u]4
11
2
d
dt
||v||2 · [u]2−||v||2 ·

1
2
d
dt
[u]22

=
1
[u]2

[(−n(Av, Av)+(f, Av))− ||ṽ||2 (−n(Av, u)+(f, u))]

=− n(Aṽ, Aṽ− ||ṽ||2 ũ)+(f/[u], Aṽ− ||ṽ||2 ũ)

Thus, we obtain

1
2
d
dt
||v||2

[u]2
+n(Aṽ, Aṽ− ||ṽ||2 ũ)=(f/[u], Aṽ− ||ṽ||2 ũ) (3.2)

Let us define m to be the positive solution of the quadratic equation

||ṽ||2=m(1+a2m) (3.3)
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Now observe that

(Aṽ, Aṽ− ||ṽ||2 ũ)=(Aṽ, Aṽ−m(1+a2m) ũ)

=(Aṽ, Aṽ−mṽ)+m(Aṽ, ṽ−(1+a2m) ũ)

=(Aṽ, Aṽ−mṽ)+ma2(Aṽ, Aũ−mũ)

=|Aṽ−mṽ|2+ma2(Aṽ−mṽ, Aũ−mũ)

+m(ṽ, Aṽ−mṽ)+m2a2(ṽ, Aũ−mũ)

and

(ṽ, Aṽ−mṽ)+ma2(ṽ, Aũ−mũ)=(ṽ, Aṽ)−m(ṽ, ṽ)+ma2(ṽ, Aũ)−a2m2(ṽ, ũ)

=m+a2m2−m(ṽ, ṽ)+ma2(ṽ, Aũ)−a2m2

=m(1−(ṽ, ṽ)+a2(Aũ, ṽ))

=m(1−(ũ, ṽ))=0

Therefore, we have

(Aṽ, Aṽ− ||ṽ||2 ũ)=|Aṽ−mṽ|2+ma2[Aũ−mũ]2

Similarly,

(f/|u|, Aṽ− ||ṽ||2 ũ)=(f/|u|, Aṽ−mṽ)+(f/|u|, mṽ− ||ṽ||2 ũ)

=(f/|u|, Aṽ−mṽ)+ma2(f/|u|, Aũ−mũ)

=(f/|u|, Aṽ−mṽ)

+ma2((I+a2A)−1/2 f/|u|, (I+a2A)1/2 (Aũ−mũ))

[
|f|2

2n[u]2
+
n

2
|Aṽ−mṽ|2

+a2m 1 |(1+a2A)−1/2 f|2
2n[u]2

+
n

2
[Aũ−mũ]22

[ (1+a2m)
|f|2

2n[u]2
+
n

2
(|Aṽ−mṽ|2+ma2[Aũ−mũ]2)

Thus,

d
dt
||ṽ||2+n(|Aṽ−mṽ|2+ma2[Aũ−mũ]2) [ (1+a2m)

|f|2

n[u]2
(3.4)
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Since

|Aṽ−mṽ|2+ma2[Aũ−mũ]2 \ (1+a2m)[Aũ−mũ]2

\ (1+a2m) min
n ¥N
|m−ln |2

we obtain

d
dt
||ṽ||2+n(1+a2m) min

n ¥N
|m−ln |2 [ (1+a2m)

|f|2

n[u]2
(3.5)

Let us suppose that

||ṽ(t0)||2=(ln+o)(1+a2(ln+o))

for some t0 ¥ [0, T). In that case m(t0)=ln+o, so (3.5) implies

d
dt
||ṽ(t0)||2 [ (1+a2m) 1 |f|2n[u(t0)]2

− no22
The right-hand side is negative by one of our assumptions. Therefore,
d
dt ||ṽ(t0)||

2 < 0, so ||ṽ(t)|| decreases in a neighborhood of t0. This proves the
theorem. i

Corollary 1. Let 0 < o < l1/2, u0 ¥Mn, o, and v0 :=(I+a2A) u0. If [u0]
> |f|/no, then there exists a unique t0 \ 0 such that

[S(t) u0] >
|f|
no
, t ¥ (−., t0)

[S(t) u0] [
|f|
no
, t ¥ [t0,.)

and

||(I+a2A) S(t) u0 ||2

[S(t) u0]2
[ (ln+o)(1+a2(ln+o)), t ¥ [0, t0]

Proof. This follows from the Theorem 1, and the inequality (2.13). i

Corollary 2. For each n ¥N, 0 < o < l1/2,

Mn, o … 3u0 ¥ V : [u0] [ |f|no 4 2 Cn, o
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Proof. This follows trivially from the last corollary. i

Theorem 2. Let u0 ¥ G0A, and let u(t) :=S(t) u0, v(t) :=(I+a2A)
S(t) u0. Then,

lim
tQ −.

||v(t)||2

[u(t)]2
¥ {l1(1+a2l1), l2(1+a2l2),...} 2 {.}

Therefore,

Mn, o=A 2 3u0 ¥ G0A : lim
tQ −.

||(I+a2A) S(t) u0 ||2

[S(t) u0]2

¥ {l1(1+a2l1), l2(1+a2l2),..., ln(1+a2ln)}4
={u0 ¥ G : [S(t) u0]=O(e (1+E) nln |t|) as tQ −., -E > 0}

Proof. If we rewrite (3.5) in its integral form, we can easily see that
the limes

lim
tQ −.

||v(t)||2

[u(t)]2
¥ [0,.]

exists. Since u0 ¨A, limtQ −.[u(t)]=.. Suppose that the above limes is
finite. Then, limtQ −. m(t) is also finite. Therefore, by (3.5),

0 [ lim sup
tQ −.

d
dt
||ṽ||2 [ − n lim inf

tQ −.
(1+a2m) min

n ¥N
|m−ln |2

+lim sup
tQ −.

(1+a2m)
|f|2

n[u]2

=− n lim
tQ −.

(1+a2m(t))min
n ¥N
| lim
tQ −.

m(t)−ln |2

since otherwise the limes would not exist. This proves the theorem. i

The previous theorem tells us that the set Mn, o doesn’t depend on the
choice of 0 < o < l1/2. Therefore, we define Mn :=Mn, o for any choice of
0 < o < l1/2.
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Corollary 3. For u0 ¥Mn such that [u0] > 4 |f|/nl1, we have

||(I+a2A) u0 ||2

[u0]2
[ 1ln+2 |f|n[u0]

211+a2 1ln+2 |f|n[u0]
22 (3.6)

Proof. This follows trivially fromCorollary 2 taking o=2 |f|/n[u0]. i

Lemma 1. For u ¥ A−1V, v :=(I+a2A) u, we have

||v||2

|v|2
\
|[u]|2

[u]2

Also

||v||2

[u]2
[ m(1+a2m)S

|[u]|2

[u]2
[ m

for m > 0.

Proof. Observe that

||v||2

|v|2
−
|[u]|2

[u]2
=
1
|v|2
1 (Av, v)− (v, v)

(v, u)
(Av, u)2

=
1
|v|2
1Av, v− (v, v)

(v, u)
u2

=
a2

|v|2
1Av, Au−(Av, u)

(v, u)
u2

=
a2

|v|2
1Av−(Av, u)

(v, u)
v, Au−

(Av, u)
(v, u)

u2
=
a2

|v|2
5Au−(Av, u)

(v, u)
u62 \ 0

Since

||ṽ||2=
||v||2

|v|2
|v|2

[u]2
=
||v||2

|v|2
11+a2 |[u]|2

[u]2
2

the last statement follows. i
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Remark 1. For the solution u of (VCHE) that satisfies the conditions
in Theorem 1, we obtain the estimate

[u(t)]2 \ 1[u(0)]2+ |f|2

8n2(ln+o)2
2 e−4n(ln+o) t− |f|2

8n2(ln+o)2
(3.7)

for t ¥ [0, T].

Proof. For t ¥ [0, T], we obtain using the last remark and Young’s
inequality

d
dt
[u]2=−2n(Av, u)+2(f, u)

\ −2n(ln+o)[u]2−2n(ln+o) |u|2−
|f|2

2n(ln+o)

\ −4n(ln+o)[u]2−
|f|2

2n(ln+o)

By the Gronwall inequality, we obtain then (3.7). i
The next result provides us with a method for producing elements of

the setsMn. It will be used for all further results. But first, we need to state
the following elementary fact:

Remark 2. If {uk} is a bounded sequence in V and limkQ. |uk−u0 |
=0 for some u0 ¥H, then u0 ¥ V and ||u0 || [ lim infkQ. ||uk ||.

Theorem 3. Let u1, u2,... ¥ V, and let t1 > t2 > · · · be such that
limtQ −. tj=−.. Suppose that for the initial data uj the solution S(t) uj
exists on the interval [tj,.). Let us also assume

[uk] [M, k ¥N (3.8)

for some constantM> 0, and

[S(tk) uk] \
|f|
no
, k ¥N (3.9)

Let there exist some n ¥N such that

||(I+a2A) S(tk) uk ||2

[S(tk) uk]2
[ (ln+o)(1+a2(ln+o)), k ¥N (3.10)
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Then, there exist u. ¥Mn and a subsequence {ukj} of {uk} such that

lim
jQ.
[S(t) ukj−S(t) u.]=0, t ¥ R (3.11)

Proof. We first want to prove that, for every t ¥ R, there exists a
constant C(t) > 0 such that

||(I+a2A) S(t) uk ||2 [ C(t) (3.12)

for k big enough. Without loss of generality, we may assume M> |f|/nl1.
First, we fix k ¥N. By Lemma 1, there exists a unique bk \ tk such that

[S(t) uk] \
|f|
no
, t ¥ [tk, bk]

[S(t) uk] [
|f|
no
, t \ bk

(3.13)

and

||(I+a2A) S(t) uk ||2

[S(t) uk]2
[ (ln+o)(1+a2(ln+o)), t ¥ [tk, bk] (3.14)

Observe that by (2.11) and (3.22), we obtain

|f|2

n2o2
=[S(bk) uk]2

[ [uk]2 e−nl1bk+
|f|2

n2l21
(1−e−nl1bk)

[ e−nl1bk 1M2−
|f|2

n2l21
2+|f|2
n2l21

Therefore, we obtain an upper bound on bk’s

bk [
1
nl1
log
o2(n2l21M2−|f|2)
(l21−o2) |f|2

=: tM (3.15)
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With C1, C2,... being various constants, (3.7) implies now

[S(t) uk]2 [ 1[S(bk) uk]2+ |f|28n2l21
2 e−4nln+1(t−bk)

=1 |f|2
n2o2
+
|f|2

8n2l21
2 e−4nln+1(t−bk)

=C1e−4nln+1(t−bk), t ¥ [tk, bk]

From here, using (3.14) and (3.15), we conclude

||(I+a2A) S(t) uk ||2 [ (ln+o)(1+a2(ln+o)) C1e−4nln+1(t−bk)

[ C2e−4nln+1(t− tM), t ¥ [tk, bk] (3.16)

On the other hand, for t \ bk from (2.13) and the previous calculations, we
obtain

||(I+a2A) S(t) uk ||2 [ ||(I+a2A) S(bk) uk ||2 e−nl1(t−bk)

+
|f|2

n2l1
(1−e−nl1(t−bk))

[ (ln+o)(1+a2(ln+o))[S(bk)]2 e−nl1(t−bk)

+
|f|2

n2l1
(1−e−nl1(t−bk))

[ (ln+o)(1+a2(ln+o))
|f|2

n2o2
=: C3

This and (3.16) together imply

||(I+a2A) S(t) uk ||2 [max{C2e−4nln+1(t− tM), C3}=: C(t), t \ tk (3.17)

Now we may use the Cantor diagonal process to extract a subsequence
{ukj} of {uk} such that the limits

lim
jQ.
S(tki) ukj=: wi ¥ V, i ¥N

exist in the space V. Since S(t): VQ V is a continuous mapping for t \ 0,
we obtain

wi=S(tki−tkj) wj, j [ i, i, j ¥N
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Letting

u. :=S(−tk1) w1

we obtain

u.=S(−tkj) wj, j ¥N

Therefore, u. ¥ G. Again, by the continuity of S(t): VQ V, we obtain

lim
jQ.
[S(t) ukj−S(t) u.]=0, t ¥ R

It remains to prove that u. ¥Mn. To this end, we consider two cases. If
lim infkQ. bk=−., then (3.11) and (3.13) imply

[S(t) u.] [
|f|
no
, t ¥ R

and, thus, u. ¥A. If, on the other hand, lim infkQ. bk=b. > −.,
Remark 2 together with (3.11) and (3.14), gives

||(I+a2A) S(t) u. ||2

[S(t) u.]2
[ (ln+o)(1+a2(ln+o)), t [ b.

In both cases u. ¥Mn. i

Theorem 4. For each n ¥N, Mn is a connected, locally compact sub-
set of V.

Proof. SinceMn is a S( · )-invariant set containing A, it is connected
as well. In order to prove the local compactness, it suffices to check that
every sequence u1, u2,... ¥Mn0A, which is bounded in V, has a sub-
sequence converging to an element of Mn. Since limtQ −.[S(t) uk]=. for
k ¥N, there exist t1 > t2 > · · · such that limtQ −. tj=−. and [S(tk) uk] \
|f|/l1o. Theorem 3 and Corollary 1 imply the wanted. i

4. RICHNESS OF THE SETSMn

One of the main results of this paper is the following theorem on the
richness of the setsMn.

Theorem 5. Let n ¥N. For every p0 ¥ PnH, there exists u. ¥Mn such
that Pnu.=p0. In other words, PnH=PnMn.
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First, we need to prove a series of lemmas.

Lemma 2. Let u ¥ Cn, o for some n ¥N, and let v :=(I+a2A) u. Then

[Qnu]2 [
1

ln+1−ln−o
((ln+o)[Pnu]2−|[Pnu]|2) (4.1)

In particular

[Qnu]2 [
ln+ln+1
ln+1−ln

[Pnu]2 (4.2)

and

[u]2 [
2ln+1
ln+1−ln

[Pnu]2 (4.3)

Proof. Observe that by Lemma 3, we have

|[u]|2

[u]2
[ ln+o

Therefore,

[Qnu]2 [
1
ln+1

|[Qnu]|2

=
1
ln+1

(|[u]|2−|[Pnu]|2)

[
ln+o
ln+1

[Qnu]2+
1
ln+1

((ln+o)[Pnu]2−|[Pnu]|2)

and (4.1) follows. The other two inequalities follow from (4.1) and the fact
that o < l1 [ ln+1−ln and both inequalities follow. i

Lemma 3. Let u ¥Mn, for some n ¥N. Then, the following estimates
hold:

[Qnu] [max 3 |f|no , 1ln+ln+1ln+1−ln
21/2 [Pnu]4 (4.4)

54 Vukadinović



and

|Qnu| [ an+bn[Pnu] (4.5)

where

an :=
2 |f|

nl1(1+a2ln+1)1/2

and

bn :=1 2ln+11+a2ln+1
21/2 · 1

(ln+1−ln)1/2

Also, limnQ. an=0 and lim infnQ. bn=0.

Proof. If [u] [ |f|
no , then

[Qnu] [ [u] [
|f|
no

If, on the other hand, [u] \ |f|
no , we get

||(I+a2A) u||2 [ (ln+o)(1+a2(ln+o))[u]2

by Corollary 1. Applying Lemma 2, we obtain (4.4). Equation (4.5) follows
from (4.4), and

|Qnu| [ (1+a2ln+1)−1/2 [Qnu]

By the properties (2.1) and (2.2) of the eigenvalues of the Stokes operator
A, we obtain limnQ. an=0 and lim infnQ. bn=0. i

Lemma 4. Let p0 ¥ PnH for some n ¥N. Then, for every t0 > 0, there
exists w0 ¥ PnH such that PnS(t0) w0=p0.

Proof. First observe that, for every u0 ¥ PnH such that [u0] >
|f|
no ,

there exists

y(u0)=min 3y > 0 : [PnS(y) u0]=|f|no 4 > 0

Backwards Behavior for viscous Camassa–Holm Equations 55



Note also that with v0 :=(I+a2A) u0 we have

||v0 ||2

[u0]2
[ ln(1+a2ln) [ (ln+o)(1+a2(ln+o))

Therefore, by Theorem 1, we have for t ¥ [0, y0]

||(I+a2A) S(t) u0 ||2

[S(t) u0]2
[ (ln+o)(1+a2(ln+o))

and

[S(t) u0]2 \ [u0]2 e−4nln+1t−
|f|2

8n2l2n

Lemma 2 now implies

[S(t) u0]2 [
2ln+1
ln+1−ln

[PnS(t) u0]2

for t ¥ [0, y0]. Therefore,

[PnS(t) u0]2 \
ln+1−ln
2ln+1

[S(t) u0]2

\
ln+1−ln
2ln+1
1[u0]2 e−4nln+1t− |f|28n2l2n

2 , t ¥ [0, y0] (4.6)

For r > 0 we define B(r) :={u0 ¥ V : [u0] < r} and Bn(r)=B(r) 5 PnH. We
now want to prove that there exists

r0 >
|f|
no

(4.7)

such that

[PnS(t) u0] > [p0], u0 ¥ PnH0Bn(r0), t ¥ [0, t0] (4.8)

It is sufficient to consider only the case [p0] \
|f|
no . We fix any r0 >

|f|
no such

that

ln+1−ln
2ln+1
1 r20e−4nln+1t0− |f|28n2l2n

2 > [p0]2 (4.9)

56 Vukadinović



For [u0] \ r0, we obtain

[p0]2 \ 1 |f|no 22=[PnS(y0) u0]2
\
ln+1−ln
2ln+1
1 r20e−4nln+1y0− |f|28n2l2n

2 (4.10)

Combining (4.9) and (4.10), we get t0 < y0. In particular, (4.6) holds for
t ¥ [0, t0]. From (4.6) and (4.9) we obtain

[PnS(t) u0] > [p0] (4.11)

for all u0 ¥ PnH0Bn(r0), t ¥ [0, t0]. In order to prove the lemma, let us
choose a continuous function h: RQ R such that h(x)=1 for x [ r0 and
h(x)=0 for x \ 2r0. Define

g(u0)=PnS(h([u0] t0) u0, u0 ¥ PnH

By (2.11) we have

S(t) B(r) … B(r), r \
|f|
nl1
, t \ 0

Therefore,

g(Bn(2r0)) … Bn(2r0)

Also, g is continuous, and it satisfies g(u0)=u0 for [u0]=2r0. We can
choose r0 large enough that p0 ¥ Bn(2r0). By Brouwer’s Fixed Point
Theorem, there exists w0 ¥ Bn(2r0) such that g(w0)=p0. If we show that
[w0] [ r0, by the definition of g, we would have

PnS(t0) w0=g(w0)=p0

and this is exactly the claim of this lemma. To this end, let’s assume
[w0] > r0. Then,

[g(w0)]=[PnS(h([w0] t0) w0] > [p0]

by (4.8). This is a contradiction, and the lemma is proven. i

Now we have the tools to prove Theorem 5.
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Proof of Theorem 5. Let p0 ¥ PnH. Choose a sequence 0 > t1 > t2 >
t3 > · · · such that limkQ. tk=−.. By Lemma 4, there exist u1, u2,... ¥ V
and p1, p2,... ¥ PnH such that

S(−tk) pk=uk, k ¥N

and

Pnuk=p0, k ¥N

Let us define

Uk(t) :=S(t) uk, t \ tk

and

Vk(t) :=(I+a2A) Uk(t), t \ tk

Let us assume first that

[pk] [
|f|
no

(4.12)

for infinitely many k ¥N. Without loss of generality, we may assume that
this is true for all k ¥N. By the Poincaré inequality, we have

||Vk(tk)||=||(1+a2A) pk || [ l1/2n (1+a2ln)1/2 [pk] [ l1/2n (1+a2ln)1/2
|f|
no

The inequality (3.21) gives

||Vk(t)|| [ l1/2n (1+a2ln)1/2
|f|
no
, t \ tk

Therefore,

[Uk(t)] [
l1/2n (1+a2ln)1/2

l1/21 (1+a2l1)1/2
|f|
no
, t \ tk (4.13)

Similarly, as in the Theorem 3, we may, by passing to a subsequence,
assume that

lim
kQ.
[Uk(t)−S(t) u.]=0, t ¥ R
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for some u. ¥ G. From here it follows that

Pnu.=Pnu1=p0

and, using (4.13), u. ¥A …Mn. This proves the Lemma under the
assumption (4.12). Let us now assume that

[pk] \
|f|
no

for infinitely many k ¥N. Again, by passing to a subsequence, we may
assume that this is true for all k ¥N. Since either [uk] [

|f|
no or [uk] >

|f|
no for

each k ¥N, by Lemma 2

[uk] [max 3 |f|no , 1 2ln+1ln+1−ln
2 [p0]4 , k ¥N

Since

||Vk(tk)||2

[Uk(tk)]2
=
||(I+a2A) pk ||2

[pk)]2
[ (ln+o)(1+a2(ln+o)), k ¥N

the assumptions of the Theorem 3 are satisfied. We obtain u. ¥Mn, so

lim
kQ.
[Uk(t)−S(t) u.]=0, t ¥ R

Exactly as in the previous case we obtain Pnu.=p0. This completes the
proof of the theorem. i

5. SOME DENSITY PROPERTIES OF THE SETSMn

This section is concerned with questions on the density of the setsMn.
It consists of two results. The first one is an analogue of a result by
Constantin et al. (1997), which positively answers the conjecture by Bardos
and Tartar (1973). It concerns the (NSE), and postulates that S(t) H is
dense in H for t > 0. However, the density is shown in a weaker norm then
the natural energy norm of (NSE). Here, we find ourselves in a similar
situation. We prove that 1n ¥N Mn is dense in H, but again in a weaker
norm then the natural energy norm for the (VCHE).
In the second result we show that the eigenvectors of the Stokes

operator A corresponding to ln for some n ¥N belong to the closure of
scaled set Mn. This time, the closure is taken with respect to the ‘‘natural’’
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energy norm for the (VCHE). The analogue of this result for the (NSE) has
been proved by C. Foias and I. Kukavica, and is yet to be published.

Theorem 6. The set 1n ¥N Mn( … G) is dense in H.

Proof. Let u0 ¥H be arbitrary. By Theorem 3, for each n ¥N there
exists un ¥Mn such that Pnun=Pnu0. From Lemma 3, we have the estimate

|Qnun | [ an+bn[Pnun]

This implies

|un−u0 |=|Qn(un−u0)| [ |Qnun |+|Qnu0 |

[ an+bn[Pnun]+|Qnu0 |=an+bn[Pnu0]+|Qnu0 |

By Lemma 3, we obtain

lim inf
nQ.

|un−u0 |=0

and the theorem is proven. i

Theorem 7. Let w be an eigenvector of the Stokes operator A corre-
sponding to the eigenvalue ln for some n ¥N, i.e., let Aw=lnw, and let
[w]=1. Then

w ¥ 3 u
[u]
: u ¥Mn
4

where the closure is taken in the norm [ · ]. In particular,

PnH … Mn+Mn+·· ·+Mnz
kn

where kn :=dim PnH=m1+m2+·· ·+mn, mj being the multiplicity of lj.

Proof. Let r > 4 |f|/nl1. By Theorem 6, the exists ur ¥Mn, such that
Pnur=rw. Also, by Lemma 2, and Corollary 3, we have

[Qnur]2 [

2 |f|
n[ur]

[Pnur]2

ln+1−ln−
2 |f|
n[ur]

[
2 |f| r2

nr(ln+1−ln)−2 |f|
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Thus,

[Qnur]2

r2
[

2 |f|
nr(ln+1−ln)−2 |f|

Q 0

and

[ur]2

r2
=
[Pnur]2+[Qnur]2

r2
Q 1

when we let rQ.. Finally

5 ur
[ur]

−w6=5ur−rw
[ur]

−w 11− r
[ur]
26

[
[Qnur]
r
+:1− r

[ur]
:Q 0

when rQ.. This proves the theorem. i
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