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First, let me be upfront with a bit of a warning. This lesson is
a bit more technical than the previous. To boot there isn’t much
material in the main book. To compensate, I add much more back-
ground here in the notes than in the first three lessons.

The basic material in this lesson covers topics that have been
opened up in recent years due to advances in computation, in par-
ticular the ease and ubiquity of computation now. “Ease,” of course
is relative, and the point here is to “ease” you in. The main thing
is simulation. Something R is particularly helpful with. We will
discuss how to do basic simulations and then apply what we see to
two types of computer-based inference: permutation methods for
doing significance tests and bootstrap methods for finding confi-
dence intervals.

To do all this, we get introduced to the following R topics:

• Writing basic functions

• Looping or iterating over values. For this we discuss for,
replicate and sapply

Statistical inference

The key idea of statistical inference is that a sample from a popula-
tion somehow represents the population – called then a representa-
tive sample. How the sample is selected has a big effect on whether
the sample is representative or not. For our discussions, statistics is
based on the sample being chosen randomly from the population. 1 1 Something devilishly hard to do in

practice!This does not ensure the sample is representative though! Rather,
the random sampling and the laws of probability say that most of
the time representative samples will be produced.

If a sample is representative, then a statistic formed from the
sample then feels the influence of the population, hence a statistic
may in turn give information about the population.

We have seen this in practice.
For example, in lesson 1 we considered the case when the pop-

ulation is normally distributed with mean µ. It was noted that
the t-statistic t = (x̄ − µ)/(s/

√
n) then has a t-distribution

with n − 1 degrees of freedom. This sampling distribution can
be used to to express a confidence interval for µ centered at x̄:
(x̄ − t∗s/

√
n, x̄ + t∗s/

√
n). The exact statement uses probability

which is possible because the sampling distribution for the statistic
in question is known:

A (1− α) · 100% confidence interval for µ based on x̄
is given by

(x̄− t∗s/
√

n, x̄ + t∗s/
√

n).
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It is well known, that the assumption of a normally distributed
population can be relaxed if other things are known: if n, the sam-
ple size, is large (by the central limit theorem); or if the popula-
tion is not too far from normal, by robustness of the underlying
t-statistic.

What can be done though when the normal assumptions or the
relaxations do not apply? In this case we do not know the under-
lying sampling distribution of x̄ and hence can’t make probability
statements as that above.

One of the advances of statistics due to the computer age is
that there are cases where unknown sampling distributions can be
simulated to gain an understanding of their center, spread, shape
and, most importantly, their distribution.

Prior to computers, simulations were still performed but were
much more tedious. Gossett (aka Student), in his 1906 paper on
the t-statistic, verified his calculations doing a simulation where
he wrote down 3,000 measurements of the left middle finger of
criminals (this data set had been previously used). He thoroughly
shuffled the cards and then grouped them into 750 groups of 4. For
each group he computed the mean and standard deviation. 2 Fol- 2 The latter being a problem as

sometimes all 4 values were identical due
to the data being truncated.

lowing these compuations, he plotted the theoretical t-distribution
that he had computed and the empirical one computed from his
simulations to investigate the match between theory and practice.

We’ll do the same, only R will make this much easier.
The basic idea of a simulation is contained in the above. We

need:

• A means to generate random samples from a population is
used. In the above this involved shuffling the 3,000 values and
the picking groups of 4. These groups are a thought of as a
random sample from the population.

• Statitics to summarize the random samples. The above men-
tions both the mean and standard deviation

• A means to investigate the population through the sample.
Gossett did so graphically, as will we, but our graphs will be
easy to do.

Simulations using R

Keeping in mind the desire to understand sampling distributions,
we see how to perform Monte Carlo simulations to investigate
sampling distributions and their properties.

R has the ”r” functions to do basic simulations from known prob-
ability distributions. For example, 5 simulated normally distributed
numbers are produced with this simple command:
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rnorm(5)

[1] 0.31487804 0.24765885 -0.31540032 -0.03455825 0.43274838

The mean and standard deviation default to 0 and 1. Additional
arguments to rnorm allow these to be adjusted.

What if we wanted to simulate from an unknown distribution, 3 3 Well, relatively unknown. With
some work this one can be found explic-
itly

say the median of 4 randomly generated normal numbers. A single
value is found with:

median(rnorm(4))

[1] 0.8482783

Another with the same command

median(rnorm(4))

[1] 0.5872316

But how can we get lots of values easily (enough so that we can
begin to see more or less what the actual distribution describing
these values is)?

The replicate function to simplify simulations
New functions

replicate
for
sapplyTo understand the distribution 4 of a statistic or random variable,

4 That is, what are the possible
values and how likely these will be.

many simluated values are needed.
There are many different ways to repeat some process in R. We

mention 3 below. First, the replicate function can be called to
replicate values n times.

An example usage would repeat the above 750 times with with: 5 5 Gosset would have loved R. It
must have taken quite a long time to
just write down the numbers involved,
let alone compute the standard devia-
tions of the 750 samples. Here we can do
things in a snap.

res <- replicate(750, median(rnorm(4)))

res[1:5]

[1] -0.03089782 0.60387400 -1.12534208 0.88634658 -0.97840332

The format is:

replicate( no. of times, block of commands to
replicate )

Sometimes (usually!) using parameters in your code makes it
easier to understand. Using n for the size of a sample and m for the
number of simulations, we might see the above written as

m <- 750

n <- 4

res <- replicate(m, {

median(rnorm(n))

})
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The braces

Composing functions, as we just done produces “one-liners.” These
are easy to write, but hard to read and debug. An alternate style
is to write different commands on different lines. If the expres-
sion has more than 1 line, the braces must be used to enclose the
expression. For example:

m <- 750

n <- 4

res <- replicate(m, {

theData <- rnorm(n)

median(theData)

})

The value assigned to res is the last one in the block. In the above
this is the median for the sample, and not the sample theData
itself.

Using for to make simulations

A more familiar means to repeat some expression to those who
have programmed before is the for loop. The basic steps here
are to define a storage vector, res, define the values to loop over
1:1000 and then do the loop.

The following shows the basic steps:

res <- c()

m <- 750

n <- 4

for (i in 1:m) {

x <- rnorm(n)

res[i] <- median(x)

}

The specification of what is being iterated over will commonly
take the form we have above, but can be more general. For in-
stance, it can be values in a data set:

for (i in letters[1:3]) print(i)

[1] "a"
[1] "b"
[1] "c"

(We skipped the braces here, as only one expression is being evalu-
ated).

Many R programmers try to avoid for loops, thinking alterna-
tives are faster. Indeed this is so when one can use vectorization
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instead, but not necessarily the case. If you are familiar with using
for loops there isn’t too much reason to change your style. If you
are learning, let’s see some other alternatives.

Applying a function

Think about what is computed in

res <- c()

for (i in 1:3) res[i] <- median(rnorm(5))

There are 3 repeats of first generating 5 random numbers and
summarizing. We could reverse, somewhat and compute 15 random
numbers first, then summarize 3 times. But how? First, to make
the 15 numbers we could just call rnorm15, but to get in a better
data format we use a matrix with 3 columns:

m <- matrix(rnorm(15), ncol = 3)

m

[,1] [,2] [,3]
[1,] -1.3804066 -1.62832286 -0.1528686
[2,] -0.8407022 -0.08419978 -0.1611478
[3,] 0.1721022 0.50120532 -0.2134632
[4,] -1.0657220 1.53696082 1.3682039
[5,] 0.5399167 -1.11045105 -0.1274351

Now we want to “apply” the median to each column. The apply
function will do this. The 2 discusses what direction to apply over
(1 would be over the 5 rows:

apply(m, 2, median)

[1] -0.84070221 -0.08419978 -0.15286858

So no for loop. This separates out the data production from the
summarizing. Sometimes a cleaner conceptual thing. 6 6 A not too distant discussion

on the R mailing list spoke to the
differences conceptually between a for
loop and using apply like functions. The
analogy of Barry Rowlingson is:

To me, the world and
how I interact with it is
procedural. When I want
to break six eggs I do ’get
six eggs, repeat ”break
egg” until all eggs broken’.
I don’t apply an instance
of the break egg function
over a range of eggs. My
world is not functional
(just like me, some might
say...). https://stat.ethz.
ch/pipermail/r-help/
2009-May/198322.html

He is arguing for a for loop – as that
breaks the eggs one at a time. Where
as replicate applies the egg breaking
function n times. R gurus learn to
appreciate the “applying” part of R, but
when learning R, a for loop seems to be
most natural.

Using sapply to iterate over values

The apply function works with matrices (and arrays). For vectors
and lists, the sapply 7 function can be used. As data frames are

7 And lapply and vapply

lists with each column being a component, the above can be done
through:

sapply(as.data.frame(m), median)

V1 V2 V3
-0.84070221 -0.08419978 -0.15286858

https://stat.ethz.ch/pipermail/r-help/2009-May/198322.html
https://stat.ethz.ch/pipermail/r-help/2009-May/198322.html
https://stat.ethz.ch/pipermail/r-help/2009-May/198322.html
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This function basically iterates over the values in its first argu-
ment and calls the function specified in the second argument on
these values. Extra arguments may be given to pass into the func-
tion. For example, were there possible NA values, we could pass
along an argument instructing R to ignore them:

sapply(as.data.frame(m), median, na.rm = TRUE)

V1 V2 V3
-0.84070221 -0.08419978 -0.15286858

Functions New functions

function keyword
R has tremendous flexibility. This is due in part to to its powerful
subsetting syntax, but most importantly to the fact that it is easy
to extend through user-written functions. Functions allow multi-
step processes to be isolated off. This encapsulation makes thinking
about large processes easier and also makes debugging easier.

An R function is similar to the abstract mathematical definition:
a function is a rule assigning a value in the domain to a value in
the range. The “domain” is specified by the function’s arguments,
the range is given by the function’s return value and the “rule”
determined by the body of the function.

For an example, the skew of a data set may be defined by

1
n ∑(xi − x̄)3

( 1
n ∑(xi − x̄)2)3/2

.

This formula is a bit tedious to type into R, and were we to use it
many times our fingers would likely rebel. Fortunately, if one were
to write a function, the typing would only need to be done once.
Here is how:

skew <- function(x) {

n <- length(x)

ds <- (x - mean(x))

top <- (1/n) * sum(ds^3)

bottom <- ((1/n) * sum(ds^2))^(3/2)

top/bottom

}

The three main pieces are:

The input variables Functions have arguments. The one above
has a single argument, x. Arguments are specified just after
the function keyword, which indicates to R a function is
being defined. We have seen in examples that some functions
have named arguments. For example, the arguments to the
rnorm function are:
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args(rnorm)

function (n, mean = 0, sd = 1)
NULL

the arguments are named n, mean and sd. The first one is not
optional, the second two have default values. You can tell, as
they are set with a value after the equals sign. (For mean it is
0 and for sd it is 1.) 8 8 There is a special argument ...

that you will meet if you go far enough
with R.When calling a function, named arguments match by name,

unnamed arguments match by position.

The body The body of a function is where the inputs get turned
into the outputs. Typically 9 the body is separated off by 9 The exception being functions

with only one expression, as for these
the braces are optional.

curly braces. The values for the arguments are passed in by
the user or the defaults are used. 10

10 When a variable is not passed
in, but still used within the body of a
function, then R has “scoping” rules to
determine where a value is to be taken
from. Scoping rules can get tricky.

The output The output of a function is simply the result of last
line evaluated. Common – but not required – is to call either
return, to return the value; or invisible, to invisibly return
the values (it won’t print). In the above, the return values is
just that found by computing top divided by bottom.

In the above, the function keyword returns a function object
that gets assigned to skew. Calling skew on a dataset will cause
this functions rule to be evaluted.

Functions too, can also be used as arguments of other func-
tions.11 In these cases, an anonymous function is often used, where 11 We did this with apply, say.

an unnamed function is used for the argument.

Question 0.0.1 The kurtosis of a distribution measures devia-
tions from a normal distribution by longer tails and/or narrower
shoulders. The t-distribution exhibits both.

The kurtosis is defined by:

(1/n) ∑(xi − x̄)4

((1/n) ∑(xi − x̄)2)2 − 3

(The −3 makes the normal distribution have 0 kurtosis.).
Write an R function to compute this value.

Question 0.0.2 Write a function to compute the t-statistic. It will
need two arguments, x to pass in the data and mu to pass in the
assumed mean.

Question 0.0.3 Define a function, center by:

center <- function(x) x - mean(x)
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Verify that we can center the variables of a data frame by using
sapply:

x <- data.frame(a = 1:3, b = 5:7)

sapply(x, center)

Assessing a simulation

We typically find ourselves simulating an unknown probability
distribution. In the following example, however, we know the sam-
pling distribution to be normal with mean 0 and standard devia-
tion 1/

√
10 (The key fact is that sums of independent normals are

normal).

res <- replicate(1000, {

x <- rnorm(1)

mean(x)

})

However, supposing we didn’t know the distribution of our data,
we could look at the simulation results either numerically with
either of these

summary(res)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.744000 -0.654400 0.025290 0.008223 0.727900 3.052000

c(mean(res), sd(res))

[1] 0.008223174 1.005748390

Or graphically 12 with either a histogram, density plot, boxplot, 12 As did Gosset

or quantile plot. For instance a density plot and quantile plot using
lattice graphics. (Figure 1.)

The following shows how to simulate the t-statistic when n = 4
and µ = 15.5. We first define a function to find the t-statistic:

tstat <- function(x, mu = 0) (mean(x) - mu)/(sd(x)/sqrt(length(x)))

Then we can use this as follows

n <- 4

mu <- 15.5

res <- replicate(1000, {

x <- rnorm(n, mean = mu)

tstat(x, mu)

})

We can compare this to the normal, and then the t-distribution
with n− 1 = 3 degrees of freedom using a quantile plot (Figure 2).
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library(lattice)

densityplot(res)

qqmath(~res)

res
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Figure 1: Density plot and quantile plot of simulation to find sampling distribution of x̄ for a normal population. The theoretical
distribution is normal with mean 0 and standard deviation 1/

√
10.

qqnorm(res, main = "Is the sampling distribution normal?")

qqline(res)

qqplot(res, rt(1000, df = 4 - 1))

Question 0.0.4 The central limit theorem basically says that the
sample mean is approximately normal. More precisely, it says x̄n,
in the limit, after rescaling, has the same quantiles as the standard
normal. This means that a quantile-normal plot of x̄ (which ignores
scaling) should be approximately a straight line.

Let the sample be given by an exponential with mean and stan-
dard deviation 1. For this we have for a given n, a single value
of

n <- 5

replicate(4, mean(rexp(n)))

[1] 0.6073047 0.6710993 0.4965685 1.5745952

Change n and using 1,000 simulations for n = 2, 5, 25, and
50. Compare your simulations to the normal quantiles using
qqnorm. For which values of n is the quantile-normal plot essen-
tially straight?
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Figure 2: Quantile plots of the simulated sampling distribution of the t-statistic. The first plot compares the distribution to the
normal distribution, the second to the t-distribution with 3 degrees of freedom.

Question 0.0.5 The t-statistic has the t-distribution if the parent
population is normal. What if the parent population has short tails?

Generate random samples with the uniform on [−1, 1] (which has
mean 0) as follows (when n = 5) (you replace m with 1000)

m <- 4

n <- 5

replicate(m, {

x <- runif(n, -1, 1)

tstat(x, 0)

})

[1] -0.1989756 1.1409462 0.3019271 -0.6737141

For n = 5, 10 and 50 compare the result of a simulation with the
t-distribution with n− 1 degrees of freedom.

Is there a difference in the distributions?

Question 0.0.6 The t-statistic has the t-distribution if the parent
population is normal. What if the parent population has long tails?

Generate random samples with the t-distribution with 3 degrees
of freedom (which has mean 0) as follows (when n = 5) (replace m

with 1000):

m <- 4

n <- 5

replicate(m, {

x <- rt(n, df = 3)

tstat(x, 0)

})
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[1] 0.9076513 -2.2809001 -0.4400149 0.4782340

For n = 5, 10 and 50 compare the result of a simulation with the
t-distribution with n− 1 degrees of freedom.

Is there a difference in the distributions?

Interactive graphics in RStudio

If you are using R Studio, the manipulate package can be used to
animate graphics. Copy and past the following into the R session
then adjust the slider to see the central limit theorem:

m <- 100

n <- 10

tdist3 <- function(n) rt(n, df = 3)

tdist10 <- function(n) rt(n, df = 10)

tdist50 <- function(n) rt(n, df = 50)

require(manipulate)

manipulate({

res <- replicate(m, {

x <- do.call(dist, list(n = n))

SE <- sd(x)/sqrt(n)

mean(x)/SE

})

qqnorm(res)

}, dist = picker("rnorm", "rexp", "runif", "tdist3", "tdist10",

"tdist50"), n = slider(2, 100))

Permutation methods

Some statistical inference can be carried out with reduced pop-
ulation assumptions because certain sampling distributions can
be computed by considering permutations of the data. The term
permutation methods covers two cases:

randomization tests where the random assignment of subjects
to treatment groups is exploited

permutation tests where there is an invariance to permutations

Historically there were few permutation methods where the sam-
pling distributions could be worked out by hand, but recent ad-
vancements in theory and in computational power have changed
that. In particular, simulations can be done to investigate previ-
ously unattainable sampling distributions, as will be seen in this
section.

[Quite a bit of this section is optional, and is here to give the
interested student some extra material.]
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The outcome of a significance test is the production of a p-value.
In order to do so with a t-test, there are necessary assumptions
made about the population that allow one to describe the sam-
pling distribution of the test statistic, in this case the t-statistic.
Some times these assumptions about the population are valid, but
of course, sometimes they are not. When they are not, different
test statistics are needed. One class of tests with known sampling
distributions are permutation methods. The sampling distributions
related to these, are computed by considering possible permuations
of the data. At one point you likely learned formulas for permua-
tions, and you may even recall that there are lots of permuations,
even when there are not many objects. As such, explicit enumera-
tion of permuations can be quite complicated – although we’ll see
that the computer is quite happy to do the work for us, up to a
point

So, in one light permuation methods may be seen as a way of
trading off stronger assumptions about a population for more com-
plicated means to compute p-values of a test statistic.

However, permuation methods have a deeper role in the under-
standing of the use of statistical tests. In an interesting article by
George Cobb The Introductory Statistics Course: A Ptolemaic
Curriculum published at Technology Innovations in Statistics Edu-
cation the author argues for the centrality of permutation methods
in the teaching of statistics, rather than tests based on the nor-
mal distribution, such as the t-test. This is because the underlying
reasoning of the randomization test matches the production of the
data.

In the article, the example of a randomized controlled experiment
is used. As learned in most introductory statistics courses, this
experiment involves a treatment, for instance some kind of care
after a knee surgery and some measure of the outcome, say time to
recovery.

The basic idea is we administer the treatment and then record
the outcome. How do we draw inference about population param-
eters from the outcomes in a sample? Significance tests are one
way.

Now a typical problem with the above experimental design is
the placebo effect – people report getting better faster, as they
believe they are supposed to. To avoid this, a control group is often
created. That is the group of people in the study are split into two:
a control group which may get a placebo and a treatment group
which gets the actual treatment. Then differences in the outcome
may be attributed to differences in the treatment, as the placebo
effect may be expected to equally alter both groups.

However, even this has issues: first, the people in the sample may
need to somehow represent a larger population that we wish to

http://repositories.cdlib.org/uclastat/cts/tise/vol1/iss1/art1
http://repositories.cdlib.org/uclastat/cts/tise/vol1/iss1/art1
http://repositories.cdlib.org/uclastat/cts/tise/
http://repositories.cdlib.org/uclastat/cts/tise/
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draw generalizations about and second, the difference in the out-
come measure between the two groups should not be attributable
to the composition of the groups or other confounding variables.

The first case (“selection of units”) is addressed by randomly
selecting participants for the study from a wider population. This
may not always be possible in practice, but when it is, it allows
the researcher to use the rules of probability to control the samples
that are somehow not representative of the population.

The second case (“allocation of units to groups”) is also ad-
dressed by randomization. Consider the case of the “crooked re-
searcher” who puts those he think will score low in the control
group and those who will score high in the treatment group. Then
difference in the outcome measure may be attributed to difference
in the groups. By randomizing, you ensure that such cases are con-
trolled by the laws of probability. This may allow the researcher to
draw causal inferences.

This second randomization gives rise to a randomization test
alternative to the two-sample t-test which would often be suggested
when comparing two independent samples.

A randomization test

For example, suppose 12 identical knee surgeries were performed.
Through randomization, 6 subjects were given the usual protocol
for rehabilitation (the control group) and the other 6 were given a
different set of instructions that the researcher thought might offer
an improvement. The time to achieve 90-degree range of motion
was used to measure the outcome. Our data may look like

control: 26 27 22 26 27 22
treatment: 18 16 17 25 18 24

Note that these people do not represent the wider population,
nor are they likely to be randomly chosen from some population.
What is random here is the allocation of the patient to the treat-
ment group.

In R we could use the t-test to analyze this significance test as
follows:

H0 : no difference in means HA : control mean is
greater

ctrl <- c(26, 27, 22, 26, 27, 22)

treat <- c(18, 16, 17, 25, 18, 24)

t.test(ctrl, treat, alt = "greater")

Welch Two Sample t-test
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data: ctrl and treat
t = 2.9019, df = 8.332, p-value = 0.009499
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
1.93331 Inf
sample estimates:
mean of x mean of y
25.00000 19.66667

This produces a small p-value indicating a a poor fit between the
data and the null hypothesis of no difference.

Of course the t-test has assumptions – normality of the popula-
tions and independence of the samples – that may not be appro-
priate. By randomization, we have independence, but the normal
population is suspect. What we do know, however, is that under
the assumption of no difference between the populations and under
the assumption of random allocation of units to treatment groups
that it shouldn’t matter what unit got assigned to which group.

That is, we shouldn’t be able to distinguish differences in the
outcomes regardless of which 6 people we could have assigned to
the control group assuming the null hypothesis is true.

Our observed difference in means is

mean(ctrl) - mean(treat)

[1] 5.333333

How unlikely is that? Well were we to have chosen the 6 for
each group differently we would likely have seen some different
value. Looking at all such possible values allows us to see if our
one observed one is unusual. We can use the sample function to
choose 6 different values from all the data to compare. Below we
take advantage of negative subscripting 13 to split the data into two 13 cf. ?"[" to review R’s subscript-

ing conventions.groups.

alldata <- c(ctrl, treat)

ind <- sample(1:length(alldata), 6)

mean(alldata[ind]) - mean(alldata[-ind])

[1] -2.666667

That is one possible other value assuming there is no difference
and we had chosen a different randomization. Our value of 5.33 can
be seen as being a big value or not so big value by comparing it to
all possible different randomizations.

The set of all randomizations is found by listing all possible ways
to pick 6 items from 12 where order is unimportant. You may know
there are 12 choose 6 ways to do this:
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choose(12, 6)

[1] 924

But how do we get a listing of these? The combn function will do
this. It returns a matrix where each column is a possible choice for
randomization. For example, a smaller set of numbers produces: 14 14 Five choose 2 counts all combina-

tions of size 2 from 5 items

combn(5, 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 2 2 2 3 3 4
[2,] 2 3 4 5 3 4 5 4 5 5

So we simply loop over these possible randomizations and store
the computed difference of means:

allRandomizations <- combn(12, 6)

n <- choose(12, 6)

res <- numeric(n)

for (j in 1:n) {

ind <- allRandomizations[, j]

res[j] <- mean(alldata[ind]) - mean(alldata[-ind])

}

How unusual (large) was our observed difference of 5.33?

sum(res > (mean(ctrl) - mean(treat)))/n

[1] 0.00974026

As an aside, 0ne can use apply as an alternate to for:

allRandomizations <- combn(12, 6)

n <- choose(12, 6)

res <- apply(allRandomizations, 2, function(ind) {

mean(alldata[ind]) - mean(alldata[-ind])

})

The above computes a p-value, showing that 5.33 is unusually
large indicating that the null hypothesis does a poor job of explain-
ing the data. This, of course, is similar to before and was more
work. But there with fewer assumptions about the populations the
data come from. All we assumed was that randomization was used
to assign units to treatment groups and that under the null the two
populations were identical. 15 15 Same data, different p-values.

At first glance this may seem odd, but
keep in mind the assumptions about
the data lead to knowledge about
the sampling distribution of the test
statistic. Generally, fewer assumptions
means less power.

This specific examples shows naturally how randomization tests
can be used in place of other significance tests. In the following we
illustrate other typical uses and their implementation in R.
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The rank-sum test

Suppose a food writer was interested in testing whether a change
of ingredient made a noticeable difference in a finished product.
To test, the food writer made two pies, one with the change of
ingredient and one without. Then she randomly assigned 10 people
to test the pies and rank on a scale of 1 to 10. The data recorded is

taster | 1 2 3 4 5 | n xbar s
-------------------------------------
pie 1 | 4 5 4 6 4 | 5 4.6 0.89
pie 2 | 5 6 6 7 5 | 5 5.8 0.83

Is there a noticeable difference in pie 1? A test of H0 : µ1 = µ2
against an alternative HA : µ1 < µ2 yields a small p-value:

pie1 <- c(4, 5, 4, 6, 4)

pie2 <- c(5, 6, 6, 7, 5)

t.test(pie1, pie2)

Welch Two Sample t-test

data: pie1 and pie2
t = -2.1909, df = 7.965, p-value = 0.05999
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.46402827 0.06402827
sample estimates:
mean of x mean of y

4.6 5.8

But does the assumption of normality apply here? The data is
not continuous and with small samples gauging normality always
requires an act of faith.

Although a t-test is fairly robust to such deviations from nor-
mality, we can try a different test statistic for which a sampling
distribution can be computed.

This sampling distribution will be computed by looking at all
possible permutations of the underlying data.

It appears that the data for the first pie is “less” than that for
the second pie. Why? If the pies were equivalent, we would expect
that the number of 4’s would be more or less equally spread out
amongst both pies, as with the number of 7’s etc. This is because
the distribution of pie-ratings should be identical for each pie.
Why equally? Because a 4 would be as likely to be assigned to pie
1 as pie 2. So here equally means on average. Technically, each
arrangement of the ranks should be equally likely, its just that most
arrangements have a more or less “equal” distribution. A measure,
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or statistic, of how the ranks are given might be to add up all the
ranks associated with one of the pies. For this problem, we first
arrange the ratings from smallest to largest. Where there are ties,
we take an average of the ranks.

value | 4 4 4 5 5 5 6 6 6 7
rank | 2 2 2 5 5 5 8 8 8 10
pie | 1 1 1 1 2 2 1 2 2 2

The ranks should add to 55 = 1 + 2 + ... + 10 and they do. The
ranks for the first pie are only 19 = 2 + 2 + 2 + 5 + 8. Is this an
unusually small number? How could we tell? In order to do so,
we need to know what the distribution is for the sum of the ranks
under the assumption that the two populations are identical.

This distribution can be computed exactly, with the aid of the
computer as the assumptions allow it to be computed using permu-
tations. If we assume that each rank is equally likely to have come
from pie 1 or pie 2, then the distribution of the rankings is found
by looking at all the possible assignments of 5 of the ranks to pie
1. There are 252 (10 choose 5) equally likely ways to assign the 5
ranks to the first pie. Of these how many create a value of 19 or
less?

R can happily compute a problem of this size. In this instance
the details are a bit tricky, but we’ll show them below. First, the
combinations are created by the function combn. This function
returns a matrix with 5 rows and 252 columns, each column being
one of the combinations. For each column then we want to sum
the ranks corresponding to these values. This can be achieved with
indexing and the sum function. To do all 252 combinations at once,
the sapply function can be used. This will apply a function to each
component of a list (columns of a data frame) and return a data
vector or list as appropriate. To use it on the output of combn we
coerce the matrix to a data frame below.

theRanks <- c(2, 2, 2, 5, 5, 5, 8, 8, 8, 10)

theCmbns <- as.data.frame(combn(10, 5))

vals <- sapply(theCmbns, function(i) sum(theRanks[i]))

We can visualize the distribution with a table

table(vals)

vals
16 19 21 22 24 25 27 28 30 31 33 34 36 39
3 12 3 30 12 36 30 30 36 12 30 3 12 3

We are interested in how likely it is to get a 19 or less. This is
computed with



18

sum(vals <= 19)/length(vals)

[1] 0.05952381

We get a p-value of 0.0595 for this test.
For the above test we could do this calculation exactly using R.

For that particular problem, the test is called the Mann-Whitney
test or the Wilcoxon Rank Sum test and is one of the standard
non-parametric significance tests. The only assumption about
the populations is that the two are identical up to a possible shift
in center. (Technically we assume the p.d.f.’s satistify f1(x) =
f2(x − c) where c is the possible shift. In the null hypothesis c is
assumed to be 0.)

The Wilcoxon-Mann-Whitney test is implemented in the wilcox.test
function of R (see Section 8.6.3 of UsingR), although that imple-
mentation covers the case where the data is continuous so there
are no ties. (The help page of wilcox.test refers the reader to the
exactRankTests package for the case with ties.)

The wilcox.test function is used in a manner similar to t.test.
For a two sample test it can take either two data vectors or a for-
mula interface. As our data is stored in two data vectors we simply
have

wilcox.test(pie1, pie2, alternative = "less")

Wilcoxon rank sum test with continuity correction

data: pie1 and pie2
W = 4, p-value = 0.04133
alternative hypothesis: true location shift is less than 0

The p value is not the same as computed above due to the ties in
the data and the continuity correction employed. Later, in our brief
description of the coin package we illustrate how its wilcox_test
function can produce the correct p-value.

Before leaving this example, it should be noted that although
a two-sample t-test or the Mann-Whitney test test similar things
there are reasons to use one over the other. At first glance it would
appear that the Mann-Whitney test, being more general, should be
the preferred test. But there are issues, primarily:

• The Mann-Whitney test has far less power than the t-test.
Practically speaking, this means you need larger samples or
bigger differences for the test to reject when the null is not
actually true

• Secondly, as per nih.gov the permutation methods do poorly
when the assumption of identical populations is not met.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?itool=abstractplus&db=pubmed&cmd=Retrieve&dopt=abstractplus&list_uids=16870938
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This is different from power, which computes the probability
of accepting when c is not 0 where f (x) and f (x − c) are
the two p.d.f.’s for the distributions. (Same f means same
shape!) The abstract indicates that you can have inflated
type I errors (rejecting H0 erroneously) when the means are
the same, but the shapes are not.

Test of means

Suppose a test is designed to see if online-instruction has a similar
performance as face-to-face instruction. Two classes are run with
each cohort being randomly assigned from a homogeneous pool of
students. At the end of the course their scores on a similar exam
are analyzed. Suppose the collected data is

online | 61 59 43 56 33 71 49 54 43 53 24
---------------------------------------------------------------------
face2 | 33 46 10 37 42 37 52 60 28

First we compute a t-test, assuming equal variances:

online <- c(61, 59, 43, 56, 33, 71, 49, 54, 43, 53, 24)

face2 <- c(33, 46, 10, 37, 42, 37, 52, 60, 28)

t.test(online, face2, var.equal = TRUE)

Two Sample t-test

data: online and face2
t = 1.82, df = 18, p-value = 0.08543
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.744615 24.350675
sample estimates:
mean of x mean of y
49.63636 38.33333

At first glance, the two means appear different but the p-value
indicates only borderline significance. The assumptions for this t-
test are two normally distributed populations with equal variances.
We are interested in detecting a change in center.

What if normality is not a valid assumption? Can we compute
the p-value a different way? Under the null hypothesis (equal
means, and the underlying assumption that the two populations
differ by at most a shift) each score is equally likely to have come
from either group. So we could see how likely our difference in sam-
ple means is for all possible permutations of the scores which assign
11 scores to the online group and 9 to the face-to-face group.

There are 167,960 ways (choose(20,11)) ways to assign the
scores. This is a big number, with some time we can compute the
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exact distribution of the test statistic. We do so below, but will
next show how to approximate this work using a random sample.

scores <- c(online, face2)

teststat <- function(ind) mean(scores[ind]) - mean(scores[-ind])

allCombns <- data.frame(combn(20, 11))

res <- sapply(allCombns, teststat)

That takes awhile to compute, but once computed we can compute
a p-value for the probability our test statistic is more than the
observed value by looking at the proportion of the combinations
that produce a greater value:

sum(res >= (mean(online) - mean(face2)))/length(res)

[1] 0.04497499

The two-sided test would be basically double this as the sampling
distribution is nearly symmetric about 0.

Using a simulation to see the sampling distribution

If the time involved is too long to generate all the permutations,
then a simulation can be used. To generate a single random combi-
nation the sample command without replacement can be used, as
in

sample(1:20, 11)

[1] 16 2 4 19 18 6 9 5 3 20 13

The first argument is what we sample from, the second the number
of samples. By default sampling without replacement is used. If the
second argument is omitted, then one of the 20! rearrangements of
the 20 terms is returned (known as a permuation):

sample(1:20)

[1] 20 8 4 5 19 16 15 10 1 9 12 11 7 6 3 2 13 18 17 14

So the exact p-value above is approximated by the randomly
generated one below:

res <- replicate(1000, teststat(sample(1:20, 11)))

sum(res > (mean(online) - mean(face2)))/length(res)

[1] 0.047



introduction to r - statistical analysis 21

Correlation test

The cor.test for whether two samples are correlated is based on
an assumption of normal populations. The tested hypotheses are

H0 : r = 0, HA : r >, <, or 6= 0

where r is the population correlation (cor(x,y) returns the sample
correlation).

Under the null hypothesis, if the values are uncorrelated then
permuting the y values shouldn’t change the correlation. This is
not the case for correlated variables.

This example might illustrate this.

x = rnorm(100)

y1 = rnorm(100) # uncorrelated

cor(x,y1)

[1] -0.04829928

y2 = rnorm(100, mean=x) # correlated

cor(x,y2)

[1] 0.7488316

But notice when we shuffle up the y-values we get different results.

cor(x, sample(y1))

[1] 0.1710046

cor(x, sample(y2))

[1] -0.08917016

If our test statistic is simply cor(x,y) then a significance test
can be made by considering how likely it is that a different permu-
tation would produce a value as large as the given correlation. This
is the Fisher-Pitman correlation test and requires no assumptions
on the underlying populations.

Let’s look at some sample data. If we record a random sample of
ages and weights from a population of 6-foot males we have

age | 25 50 24 60 35 42 52
-----------------------------------------------
weight| 180 175 200 210 185 185 195

Is there evidence that the population correlation is 0?
If we assumed that the populations were normally distributed

we’ve seen that the cor.test gives a two sided p-value of
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age <- c(25, 50, 24, 60, 35, 42, 52)

weight <- c(180, 175, 200, 210, 185, 185, 195)

cor.test(age, weight)

Pearson's product-moment correlation

data: age and weight
t = 0.7299, df = 5, p-value = 0.4982
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5777505 0.8619507
sample estimates:

cor
0.3103228

If we were worried about the normality assumption, we can do an
exact test based on permutations. As there are 7 cases, there are
7! = 5, 046 possible permutations. 16 16 This is small enough to do

without simulation, but we won’t pursue
that. Those who are interested might
find the permutations function from the
e1071 package to be useful to generate
the possible permuations.

We do this compuations using simulation. The sample function
simply permutes the values in weight below so that each time the
replicate function call cor a newly shuffled weight variable is
used:

res <- replicate(1000, {

cor(age, sample(weight))

})

t.obs <- cor(age, weight)

sum(res <= -abs(t.obs) | res >= abs(t.obs))/length(res)

[1] 0.51

Question 0.0.7 Use a permutation test to test if these two inde-
pendent samples have the same median

x | 8 5 3 1 2 12 0 3 12 21 20 13
-------------------------
y | 1 7 20 17 1 8 1 5 9 1

You may assume the populations are identical up to, perhaps, a
shift in their center.

Which test do you use? Is it already implemented, or do you
have to find all the terms yourself?

Question 0.0.8 The home data set in UsingR has data on old and
new assessed values for 15 homes randomly sampled from a towns
housing stock. Use a permutation test to test

H0 : r = 0 HA : r > 0

where r is the population correlation coefficient.
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The coin package

[This is only for the interested reader. It discusses a package in R
giving a general framework for permutation tests.]

A general framework for many more permutation tests is pro-
vided by the coin package. This implementation is beyond the
scope of this introductory class, but we sketch out briefly what the
package provides below for the interested reader.

The coin package is used to handle the following general class
of problems, which we describe briefly here only to give a flavor.
There are two samples, x and y whose sampling distributions are
not known. The interest is in a test whose null hypothesis is that
the two populations are independent. One way to write this is to
express the conditional distribution of one on the other, say y on x.
Then a certain type of test statistic, such as the rank sum, is con-
sidered. The actual class of statistics is multivariate linear statistics
of a certain form which are then turned into univariate statistics in
one of two ways. The distribution of these test statistics, in gen-
eral, will not be known. However, under the null hypothesis, as the
values of x do not influence the values of the y, one can fix these
values of x. The special form of the test statitistic then ensures
that the sampling distribution does not depend on a permutation
of the y variables. In this case, the probability the test statistic is
less (more) than a certain value is given by the proportion of all
permutations which produce a value less (more) than the certain
value.

The proper setup of the above allows for analysis in a number of
ways.

• If the problem is small enough all the possible permutations
can be considered. Such tests are a class of exact tests. How-
ever, in general:

• If the number of permutations is too large to make their
enumeration feasible then a simulation can be run to estimate
the p-value.

• If the problem size is large enough, then there are asymptotic
results about the problem that allow the normal distribution
to be used. This is similar to what occurs with the Wilcoxon
rank-sum test, where for large n a normal approximation is
used for the sampling distribution.

The coin package implements a wide range of permutation tests,
and is flexible enough to allow the user to implement new tests
with out the need of complicated coding. However, defining the
statistic and the problem is more complicated than the level of this
course. In the following we mention just a single application. The
package itself contains two vignettes for the interested reader.
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The rank-sum test

As mentioned the Wilcoxon rank-sum test performed in the first
example is implemented in the wilcox.test function. This func-
tion is called in a manner similar to the t-test. Here is the test that

H0 : µ1 = µ2, HA : µ1 < µ2

The test is non-parametric, but there is an assumption on the
population, namely that the two populations are symmetric. This
ensures that under H0 that a given rank is equally likely to have
come from either population.

To illustrate, we revisit the pie-rater problem, where we saw:

wilcox.test(pie1, pie2, alt = "less")

Wilcoxon rank sum test with continuity correction

data: pie1 and pie2
W = 4, p-value = 0.04133
alternative hypothesis: true location shift is less than 0

The small p-value is a bit misleading, as the warning message indi-
cates that exact p-values are not computed.

The wilcox_test function in the coin package can compute
these. First, we show how to install the coin package if it isn’t
already:

> install.packages("coin", dep=TRUE)

Now we load the package.

library(coin)

The function has a similar name with the dot “.” replaced by an
underscore “_”. The function needs to be called using R’s formula
notation. We first stack the data to do so.

d <- stack(data.frame(pie1, pie2))

wilcox_test(values ~ ind, data = d, alt = "less")

Asymptotic Wilcoxon Mann-Whitney Rank Sum Test

data: values by ind (pie1, pie2)
Z = -1.8439, p-value = 0.0326
alternative hypothesis: true mu is less than 0

The key above is the term Asymptotic.
The returned p-value is not computed with the exact distri-

bution. The default is to compute using an assumption of large
samples. This isn’t the case here, so we have to ask for the “exact”
distribution to be used.
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wilcox_test(values ~ ind, data = d, alt = "less", distribution = "exact")

Exact Wilcoxon Mann-Whitney Rank Sum Test

data: values by ind (pie1, pie2)
Z = -1.8439, p-value = 0.05952
alternative hypothesis: true mu is less than 0

Here the p-value previously computed the hard way is returned.
As an illustration, the argument distribution = "approximate"

will compute the p-value using a simulation.

wilcox_test(values ~ ind, data = d, alt = "less", distribution = "approximate")

Approximative Wilcoxon Mann-Whitney Rank Sum Test

data: values by ind (pie1, pie2)
Z = -1.8439, p-value = 0.062
alternative hypothesis: true mu is less than 0

This p value will vary from run-to-run, but will be close to the
exact one.

The Bootstrap

The bootstrap method is another computer intensive means to
investigate distributions. Rather than rely on permutations, the
boostrap method simulates an approximate distribution. For the
boostrap we assume only that we have a random sample from a
population and hence a single value for the statistic. From this, we
“bootstrap” up to a understanding of the sampling distribution of
the statistic.

Some background reading on the bootstrap method is contained
in these resources:

• wikipedia has a nice description of the topic: http://en.
wikipedia.org/wiki/Resampling_(statistics)

• A free chapter from the Moore and McCabe book, http:
//bcs.whfreeman.com/ips5e/content/cat_080/pdf/
moore14.pdf, although a bit long, this provides a more com-
plete exposition than what follows.

• Finally, if you have the book, then, as usual, Venables’ and
Ripley’s Modern Applied Statistics with S-Plus has an author-
itative, succinct treatment on pages 143-146.

http://en.wikipedia.org/wiki/Resampling_(statistics)
http://en.wikipedia.org/wiki/Resampling_(statistics)
http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore14.pdf
http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore14.pdf
http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore14.pdf
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The basic idea of the bootstrap

To investigate the bootstrap, we first fix notation. Let X denote a
random sample and F the population. We are interested in using
a statistic R to estimate or make inference about a parameter θ.
We write the statistic R(X, F) to emphasize it is based on a sample
and reflects the distribution. The sampling distribution of R− θ is
of interest as it may reflect information about F or θ. The idea of
the bootstrap method is to understand the sampling distribution of
R(X, F)− θ using the data that has been previously observed.

To make this less abstract, for the t-test we have R(X, F) is
basically the sample mean, x̄ and θ is the population mean µ. We
know the sampling distribution of x̄ − µ: it is normal with mean 0
and standard deviation σ/

√
n, when F is the normal distribution.

The main idea of the bootstrap is a sample X = {X1, X2, . . . , Xn}
from a population gives rise to F̂, the empirical distribution from
which we subsequently sample. 17 17 The empirical distribution assigns

probability i/n to an interval A if A
contains exactly i of the n data points.From this sample, let X∗1 , X∗2 , . . . , X∗n be a resample of size n with

replacement. This resample gives rise to a new random variable
R(X∗, F̂) where we simply compute the statistic for the new data.
As the resample reflects F̂ which in turn reflects F, the distribution
of this new random variable should give insight into the distribu-
tion of the original. What kind of insight? We may be interested
in the center, as there may be a bias introduced by the process; the
spread, to understand the inherent variability; and the shape.

Now, why do we know anymore about the distribution of R(X∗, F̂)?
Because we can simulate this random variable. 18 18 There are cases where a theoreti-

cal treatment is possible, but that’s not
our interest here.First let us consider the concrete example above where the un-

derlying population is known. This allows us to see what issues
may be involved.

Let F be the normal distribution and with µ = 5 and σ = 2
and let n = 10 (our sample is X1, X2, . . . , X10). Suppose we want
to know about X̄ − µ. (R is the mean.) In this case, we know the
answer: the distribution is normal with mean 0 (unbiased) and
variance σ2/10.

Although in this case we don’t need the bootstrap, if we used
it then we would consider a sample with replacement of size 10
from the original sample of size 10, call this X∗. Then this new
sample produces a mean X̄∗. The bootstrap method looks at the
distribution of X̄∗.

The sample function

We will use the sample function to take a sample from a set of
numbers. By default this function randomly samples a certain
number of values from a specified set without replacement:
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items <- 1:5

sample(items, size = 3)

[1] 5 2 3

The size argument is optional, it defaults to the size of items:

sample(items)

[1] 3 4 1 5 2

In this case we get a rearrangement, as we sample without re-
placement. For the bootstrap method, we sample with replace-
ment. This requires the replace=TRUE argument (abbreviated to
rep=TRUE below)

sample(items, rep = TRUE)

[1] 2 3 1 3 4

That is we can resample from a data set as follows:

theOriginalSample <- rnorm(5)

theOriginalSample

[1] 0.17435367 -0.03117268 -0.98778796 0.29159359 -1.37368906

sample(theOriginalSample, rep = TRUE)

[1] -0.98778796 0.17435367 -1.37368906 -0.03117268 -0.98778796

Question 0.0.9 Just for practice – or convenience – can you
define a resample function?

A bootstrap example

With the sample function we can do the simulation above to find
the bootstrap distibution. First we define the original sample:

X <- rnorm(10, mean = 5, sd = 2)

Now we use replicate to compute 1,000 bootstrap samples

res <- replicate(1000, {

Xs <- sample(X, rep=TRUE)

mean(Xs) -5

})
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These resulting values are termed the replicates to distinguish
them from the original sample.

How do we interpret this output?
In this case the statistic x̄ is an unbiased estimator for the mean,

µ. In general we don’t know this for the population. In the no-
tation above, the bias is the expected value of R(X, F) − θ. This
is approximated by the bias in R(X∗, F) − R(X, F), that is the
difference between the value of the statistic and the center of the
bootstrap simulation. For our data this bias is estimated by

mean(res) - (mean(X) - 5)

[1] 0.01839669

and the spread by either the IQR or standard deviation

c(IQR = IQR(res), sd = sd(res))

IQR sd
0.854959 0.607704

This indicates that the bootstrap sample is unbiased in agree-
ment with the fact that x̄ is an unbiased estimator for µ.

We could graphically assess this with a boxplot (Fig.3).

●● ●

−1 0 1 2

Figure 3: Boxplot of bootstrap samples
showing the unbiasedness of the statistic.

For this example, we know that the standard deviation of x̄ is
σ/
√

10 and this compares with the result above:

sd(res) - 2/sqrt(10)

[1] -0.02475152

The shape of our bootstrap sample is bell shaped, as can be seen
from the histogram, say:

hist(res - (mean(X) - 5))

abline(v = 0, col = "red", lwd = 2)

Histogram of res − (mean(X) − 5)

res − (mean(X) − 5)
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Figure 4: Histogram of the data from
our simulation of X̄∗ − µ.

Assuming normality we can use the known percentiles of the
normal distribution to compute confidence intervals. In this case we
would get the following 95% confidence interval:

mean(res) + c(-1, 1) * 1.96 * sd(res)

[1] -0.618728 1.763472

The center (mean(res)) does not reflect the possible bias. This is
corrected for when we use the boot package.

The shape need not be normally distributed. In that case, con-
fidence intervals are often computed from the percentiles of the
bootstrap simulation. These are termed percentile confidence inter-
vals. From our sample we have
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alpha <- 0.05

quantile(res, c(alpha/2, 1 - alpha/2))

2.5% 97.5%
-0.5840449 1.7545572

Both the above suffer from a bias. The more difficult to explain
BCa intervals attempt to correct this bias. These will be shown
when the boot package is introduced.

Bootstrapping the median

Our next example uses the faithful data set in the MASS package.
First we assign the data to the variable erupt.

library(MASS)

erupt <- faithful$eruptions

This is a bimodal data set containing the time between eruptions
of the Old Faithful Geyser. Our goal is to make inference on the
median of the population.

Of course the sample median is found with

median(erupt)

[1] 4

but how can we relate this to the population median?
We first perform a bootstrap simulation

res <- replicate(1000, median(sample(erupt, rep = TRUE)))

We look at the possible bias of using the median for the estima-
tor

mean(res) - median(erupt)

[1] -0.0174125

There appears to be none, although we need to consider the vari-
ability to be certain.

The shape of the bootstrap distribution does not appear to be
normal, so we use the percentile confidence intervals to find a 95%
confidence interval

alpha <- 0.05

quantile(res, c(alpha/2, 1 - alpha/2))

2.5% 97.5%
3.833 4.100
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The trimmed mean

The trimmed mean, x̄t is often suggested to estimate a population
center when the data is long tailed. The trimming lessens the ef-
fects of the outliers, but unlike the median, combines information
from typical points near the center.

In this example, we look into using the bootstrap method to find
a confidence interval for the population mean of the erupt data
using the 25% trimmed mean.

First, we create the bootstrap sample. We use the trim=0.25
argument for mean() to get a trimmed mean.

tmean <- function(x) mean(x, trim = 0.25)

res <- replicate(1000, tmean(sample(erupt, rep = TRUE)))

opar <- par(mar = c(3.5, 4.1, 0.1, 0.1))

boxplot(res - mean(erupt, trim = 0.25), horizontal = TRUE)

●●● ●●● ●●● ●●
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Figure 5: Boxplot of bootstrap replicates
for trimmed mean. They show little bias.

There appears (Figure 5) to be little bias between x̄∗t and x̄t:

mean(res) - mean(erupt, trim = 0.25)

[1] 0.001325441

In fact the sampling distribution of the bootstrap statistic ap-
pears normal, so we use the normal quantiles to find a 95% confi-
dence interval.

mean(res) + c(-1, 1) * 1.96 * sd(res)

[1] 3.450083 3.922641

The boot package

The boot package will automate the finding of bootstrap samples
and compute confidence intervals in one of several ways. We show
how to do the two of the previous examples using this package.

First you may need to install the package. It is available from
CRAN, and may be installed from the menu bar or with a com-
mand like

> install.packages("boot")

If the package is installed, we can load the package with

library(boot)

The main function is boot(). To use it one must specify, at a
minimum the data, the statistic and the number of replicates. The
boot function does not use a for loop (for speed). So, one must
specify the statistic a bit differently. In the upcoming example, we
use a function of two variables.

To create 1,000 bootstrap replicates for the median we have
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erupt.median <- boot(erupt, function(x, i) median(x[i]), R = 1000)

erupt.median

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = erupt, statistic = function(x, i) median(x[i]), R = 1000)

Bootstrap Statistics :
original bias std. error

t1* 4 -0.015099 0.07868858

The printed summary shows the original value of the statistic for
the data, the bias of the bootstrap data and the standard error of
the bootstrap data.

As with linear models, the return value contains more informa-
tion. The return value is a list. The t component contains the
bootstrapped data. However, you may not need to access this. For
example, to plot the data, the generic plot function is used (Fig-
ure 6.)

plot(erupt.median)
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Figure 6: Plot of the bootstrap sample
produced by plot showing non-normality

Confidence intervals are computed by the boot.ci function. The
default shows 95% confidence intervals.

boot.ci(erupt.median)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = erupt.median)

Intervals :
Level Normal Basic
95% ( 3.861, 4.169 ) ( 3.883, 4.167 )

Level Percentile BCa
95% ( 3.833, 4.117 ) ( 3.781, 4.083 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

As noted, these confidence intervals are on the original scale.
The “Normal” confidence intervals use the normal distribution to
estimate the width and adjust for the bias. The “basic” intervals
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are similar to the percentile confidence intervals only they are
centered by the original statistic. The “BCa” are bias-corrected.

We repeat the above with the trimmed mean, only this time
finding 90% confidence intervals to indicate how that parameter is
changed.

erupt.trim <- boot(erupt, function(x, i) tmean(x[i]), R = 1000)

boot.ci(erupt.trim, conf = 0.9)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = erupt.trim, conf = 0.9)

Intervals :
Level Normal Basic
90% ( 3.484, 3.877 ) ( 3.482, 3.885 )

Level Percentile BCa
90% ( 3.485, 3.888 ) ( 3.479, 3.882 )
Calculations and Intervals on Original Scale

Extensions to the basic bootstrap

The basic bootstrap described above is only a start on the pos-
sibilities that have been explored. Some other possibilities are to
bootstrap from a density estimate not from F̂, or to bootstrap more
complicated statistics such as the regression line.

Question 0.0.10 Again for the erupt data, find confidence inter-
vals using the bootstrap method for the standard deviation.

Do the bootstrap replicates appear to be normally distributed?

Question 0.0.11 Again for the erupt data, find confidence inter-
vals using the bootstrap method for the mad. (The mad is the median
of the deviations from the median and measures the center of a
distribution in a more robust way than the mean.)

Do the bootstrap replicates appear to be normally distributed?

Question 0.0.12 Again for the erupt data, find confidence inter-
vals using the bootstrap method for the skewness. The skewness is
defined by

skewness <- function(x) sum((x - mean(x))^3/sqrt(var(x))^3)/length(x)

It measures non-symmetry, or skew, in a data set. Do the boot-
strap replicates appear to be normally distributed?
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Answers to questions

Answer: 0.0.1 We have the following:

kurtosis <- function(x) {

n <- length(x)

z <- x - mean(x)

((1/n) * sum(z^4))/((1/n) * sum(z^2))^2 - 3

}

Answer: 0.0.2 Try this:

tstat <- function(x, mu) {

n <- length(x)

SE <- sd(x)/sqrt(n)

(mean(x) - mu)/SE

}

Answer: 0.0.3 Just type in to see:

center <- function(x) x - mean(x)

x <- data.frame(a = 1:3, b = 5:7)

sapply(x, center)

a b
[1,] -1 -1
[2,] 0 0
[3,] 1 1

Answer: 0.0.4 We use the par function with the mfrow argument to
specify 4 graphics. Then we simulate

set.seed(10)

par(mfrow = c(2, 2))

for (n in c(2, 5, 25, 50)) {

x <- replicate(1000, mean(rexp(n)))

qqnorm(x, main = paste("Simulation for n=", n, sep = ""))

}
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In my simulation (with the random seed set), you can see a
pronounced curve until n = 50.

Answer: 0.0.5 We look at some quantile graphs as follows

par(mfrow = c(2, 2))

m <- 1000

for (n in c(5, 10, 50, 100)) {

sam <- replicate(m, {

x <- runif(n, -1, 1)

tstat(x, 0)

})

qqplot(sam, rt(1000, df = n - 1), main = n)

}
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By n = 10, the graphs seem to have straightened out. Answer:
0.0.6 The solution is nearly identical to the previous.

par(mfrow = c(2, 2))

m <- 1000

for (n in c(5, 10, 50, 100)) {

sam <- replicate(m, {

x <- rt(n, df = n - 1)

tstat(x, 0)

})

qqplot(sam, rt(1000, df = n - 1), main = n)

}
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By n = 50 things seem to be okay, but there is still a possible
issue with the tail even with n = 100. Answer: 0.0.7 The test of
median is implemented by the wilcox.test function. So we only
need to enter the data and apply the function.

x <- c(8, 5, 3, 1, 2, 12, 0, 3, 12, 21, 20, 13)

y <- c(1, 7, 20, 17, 1, 8, 1, 5, 9, 1)

wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction

data: x and y
W = 68.5, p-value = 0.5952
alternative hypothesis: true location shift is not equal to 0

Answer: 0.0.8 Following the example, we simulate to mix around
the y values:

library(UsingR)

r.obs <- with(home, cor(old, new))

res <- with(home, replicate(m, cor(old, sample(new))))

sum(abs(res) > abs(r.obs))/m

[1] 0

The 0 p-value is consistent with the fact that old and new home
values are obviously correlated – an expensive house stays expen-
sive after a new reassessment.
Answer: 0.0.9 The resample function just needs to have a new
argument:

resample <- function(..., replace = FALSE) sample(..., replace = FALSE)

Answer: 0.0.10 We just need to modify the function in our call to
boot to do this:
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erupt <- faithful$eruptions

erupt.sd <- boot(erupt, function(x, i) sd(x[i]), R = 1000)

boot.ci(erupt.sd)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = erupt.sd)

Intervals :
Level Normal Basic
95% ( 1.097, 1.192 ) ( 1.098, 1.195 )

Level Percentile BCa
95% ( 1.088, 1.185 ) ( 1.091, 1.187 )
Calculations and Intervals on Original Scale

plot(erupt.sd)

Histogram of t
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Answer: 0.0.11 We just need to modify the function in our call to
boot to do this:

erupt <- faithful$eruptions

erupt.mad <- boot(erupt, function(x, i) mad(x[i]), R = 1000)

boot.ci(erupt.mad)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = erupt.mad)

Intervals :
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Level Normal Basic
95% ( 0.6178, 1.2150 ) ( 0.5427, 1.1490 )

Level Percentile BCa
95% ( 0.7532, 1.3595 ) ( 0.7413, 1.2979 )
Calculations and Intervals on Original Scale

plot(erupt.mad)
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Answer: 0.0.12 Again, the computation just involves modifying the
previous work.

erupt <- faithful$eruptions

erupt.skew <- boot(erupt, function(x, i) skewness(x[i]), R = 1000)

boot.ci(erupt.skew)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = erupt.skew)

Intervals :
Level Normal Basic
95% (-0.6263, -0.2065 ) (-0.6194, -0.2025 )

Level Percentile BCa
95% (-0.6246, -0.2077 ) (-0.6417, -0.2135 )
Calculations and Intervals on Original Scale

plot(erupt.skew)


	Statistical inference
	Simulations using R
	The replicate function to simplify simulations
	The braces
	Using for to make simulations
	Applying a function
	Using redsapply to iterate over values
	Functions
	Assessing a simulation
	Interactive graphics in RStudio

	Permutation methods
	A randomization test
	The rank-sum test
	Test of means
	Using a simulation to see the sampling distribution
	Correlation test
	The redcoin package
	The rank-sum test

	The Bootstrap
	The basic idea of the bootstrap
	The sample function
	A bootstrap example
	Bootstrapping the median
	The trimmed mean
	The redboot package
	Extensions to the basic bootstrap

	Answers to questions

