Using R for Introductory Statistics

John Verzani

CUNY/the College of Staten Island

January 6, 2009

http://www.math.csi.cuny.edu/verzani/R/AMS-MAA-Jan-09.pdf

Statistics and Computers

The field of statistics has been revolutionized by computers

- Access to large data sets
- Simulation studies
- Robust statistics. ...
- Computational statistics: iterative algorithms, bootstrap, MCMC, ...

Pedagogy could catch up, but for now *introductory* statistics:

- Focuses on summary statistics now easy to compute
- Focuses on normal approximations to produce inference.
- Focuses on linear models (simple regression, ANOVA)
- Some focus on simulations

Some technology solutions for teaching statistics

As of now, no consolidation in statistics software

- Calculators easy, reliable, students like; data sets, doesn't grow
- Excel ubiquitious, familiar, great for data manipulation; not always right!, programming is tedious, ...
- GUI driven for students: Fathom, JMP, DataDesk; easy to use, don't grow so well
- GUI driven, commandline: Stata, SPSS, SAS, MINITAB; widely used, programming tedious.
- Command line: R (S-Plus); widely used, geared toward extending language.

Why use **R** in an Introductory class?


www.r-project.org

- Open source, multi-platform, statistical computing environment:
- Used by many academics, businesses worldwide
- A programming language (similar to S-Plus) geared toward statistical usage: pre-programmed functions for common things.
- Command line interface (CLI) encourages computational literacy (some GUIs exist)

Using R with introductory statistics

Things to consider

- Have clear learning goals for use: statistical understanding through examples to forced computational literacy – many target populations for introductory statistics
- GUIs make R easy to use to get at statistical questions (http: //www.amstat.org/publications/jse/v16n1/verzani.html)
 but currently lack the polish of professional packages. (Rcmdr, pmg, RKWard)
- CLI is harder to teach, but R does not have a difficult syntax to learn.
 Introductory statistics is fairly finite.
- Never enough time, hard for all students to learn independently
- Success depends on students students learn at different rates

Data

Some Examples, load data

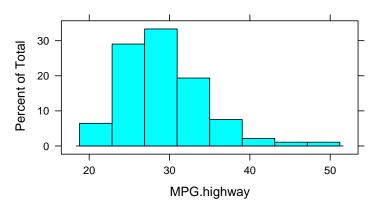
Load a data set

```
> x <- c(1.2, 2.1, 3.3) # type in -- tedious for students
```

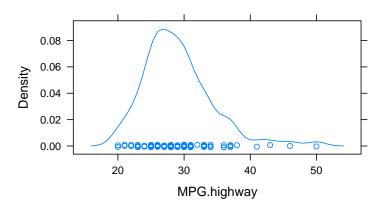
- > ## built in data sets (from a package in this case)
- > library(MASS)
- > data(Cars93)
- > ## output from excel as csv
- > x <- read.csv("test.csv", header=FALSE)</pre>
- > ## tab separated
- > x <- read.table("test.txt", header=TRUE)</pre>
- > ## or download from a website
- > x <- source("http://wiener.math.csi.cuny.edu/st/R/Diet.R")

Numeric summaries

Summary statistics

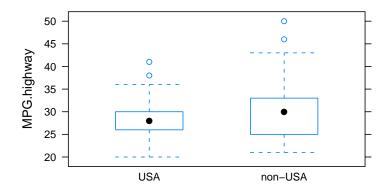

```
> mean(Cars93$MPG.highway) # need variable name
[1] 29.08602
```

Tables


◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣魚(

EDA: Histograms

- > library(lattice)
- > histogram(~ MPG.highway, data = Cars93)


> densityplot(~ MPG.highway, data = Cars93)

Multivariate

Multivariate graphics

> bwplot(MPG.highway ~ Origin , data = Cars93)

T-tests. (Ignore lack of random sampling!)

```
> t.test(MPG.highway ~ Origin, data = Cars93)
Welch Two Sample t-test
data: MPG.highway by Origin
t = -1.7545, df = 75.802, p-value = 0.08339
alternative hypothesis: true difference in means is not equal
95 percent confidence interval:
 -4.1489029 0.2627918
sample estimates:
    mean in group USA mean in group non-USA
             28.14583
                                   30.08889
```

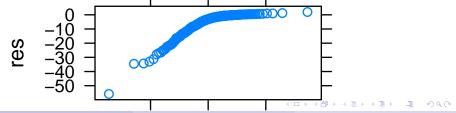
Permutation tests

```
> library(coin) ## external package -- *lots* of them
> wilcox_test(MPG.highway ~ Origin, data = Cars93)
Asymptotic Wilcoxon Mann-Whitney Rank Sum Test
```

```
data: MPG.highway by Origin (USA, non-USA)
Z = -1.3109, p-value = 0.1899
alternative hypothesis: true mu is not equal to 0
```

Scatterplots

> plot(MPG.highway ~ Weight, data=Cars93)


> res <- lm(MPG.highway ~ Weight, data = Cars93)

Regression

> summary(res)

```
Call:
lm(formula = MPG.highway ~ Weight, data = Cars93)
Residuals:
     Min 10 Median 30 Max
-7.65007 -1.83591 -0.07741 1.82353 11.61722
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.6013654 1.7355498 29.73 <2e-16 ***
Weight -0.0073271 0.0005548 -13.21 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
    John Verzani (CSI)
                      Using R for Introductory Statistics
                                                January 6, 2009 24 / 28
```

Simulations: for loops are one approach

Materials

Students need materials to follow, often these are written by the instructor

- Examples should be driven by material not computer use. Examples should tell a story.
- Students learn at different rates materials should keep them all busy
- Use large, real data sets or do problems that can't otherwise be done
- Do share on the internet what you create
- Avoid complication at the expense of simplicity (at times):
 - Focus on easy before hard: for loops before vectorized approaches (in **R** apply functions, sage list comprehensions)
 - Computer languages are hard to learn, but that part is easy to forget.
 - Functional programming easier to get across than OOP
 - Classes are needed by the developers more so than the users

Be aware that...

- CLI + syntax has no common metaphor (email, text message, ...);
- Source files, editors have no common metaphor
- Colleagues learn slower than students
- Adoption within dept. hard (standarization can be hard)
- It can be hard for students to conceptually relate computational result with question
- Many students aren't motivated by cost/availability of software