
maximum likelihood estimation 1

Defining a likelihood function

The likelihood function is related to the probability distribu-
tion function, but its view point is turned around. Take the
binomial distribution:

p(k; p,n) = P(X = k) =
(

n
k

)
pk(1− p)n−k

This is written as a function of k with parameter values p
and n (the sample size). Assuming you know how big your
sample is – you did count the data – we still have p unknown.
The probability distribution function allows you to compute
probabilities with p is known. In statistics though – p is
unknown, whereas the sample data is known.

A sample is usually assumed to be a random sample where
each number is assumed to be a realization indpendent ran-
dom variables. To the layman, independent means multiply,
so the probability distribution of taking m realizations of the
binomial would have distribution:

p(k1,k2,,km; p,n) =
(

n
k1

)
pk1(1− p)n−k1 · · ·

(
n

km

)
pkm(1− p)n−km .

The likelihood method at its basic level just reverses how
we view the above function. Rather than thinking the val-
ues k1, ... depend on p, we think instead knowledge of the k
influences what we think p is. So we write instead

L(p) = p(k1,k2,,km; p,n)

The likelihood method for estimating parameters has one
choose the value of p that maximizes this probability – that
is roughly it is the most likely value of p for the given data.

The logarithm

The logarithm is a mathematical function with three very
useful properties for us:

1. It turns products into sums

2. It makes really small numbers into much bigger nega-
tive numbers

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 2

3. It takes positive numbers to the entire real line

The first two properties are why we consider the negative
log likelihood instead – the small numbers are now large
and the products that come from independence are replaced
with mathematically easier sums. The penalty? We need to
minimize instead of maximize, but this just means we need to
keep this straight – the work is no harder.

For example, the negative log likelihood above in R be-
comes:

> Lk <- function(p) prod(dbinom(k, prob=p, size=n))

This assumes the data is in the variable k and n is the vari-
able n

For example, here is some simulated data:

> p <- .25; n <- 25

> k <- rbinom(20, prob=p, size=n)

To graph Lk we have one issue – it isn’t vectorized so mak-
ing a bunch of values at once requires an extra step. Then we
can graph Lk with

> ps <- seq(0.01, 0.99, by=.01)

> plot(ps, sapply(ps, Lk), type="l")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0e

+
00

1.
0e

−
20

2.
0e

−
20

3.
0e

−
20

ps

sa
pp

ly
(p

s,
 L

k)

Figure 1: Graph of Likelihood
function

Question 0.1. The function sapply simply calls the spec-
ified function for each value in the vector of numbers and
packages the answers up into as tidy an output as possible.
In the above, it is a data vector. We could aslo have done
similar things with a loop. Here is how:

> ys <- numeric(length(ps))

> for(i in 1:length(ps)) {

+ ys[i] <- Lk(ps[i])

+ }

Do so, then check that plotting the ps against the ys gives
the same graphic.

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 3

For this graph we look to maximize, however note the y
axis – the numbers are tiny. The issue here is the computer is
then sensitive to round off error. So, we take logs:

> negLL <- function(p) -log(Lk(p))

But that is not good either, rather we do the math first, then
write. This turns products into sums, so we have:

> negLL <- function(p) -sum(log(dbinom(k, size=n, prob=p)))

Or using an argument for dbinom:

> negLL <- function(p) -sum(dbinom(k, size=n, prob=p, log=TRUE))

Question 0.2. Verify that all three of the styles above give
the same answers by computing negLL(0.5) for each. Did it
work?

Plotting negLL gives a graph where the minimum value is
of interest

> plot(ps, sapply(ps, negLL), type="l")

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

ps

sa
pp

ly
(p

s,
 n

eg
LL

)

Figure 2: Plot of negative log
likelihood

Using optim to find minimum values

We can eyeball the minimum point, but to get values we need
to be able to optimize the value.

Optimization in most cases can be tricky – it often re-
quires good estimates for the parameters. Most computer
algorithms implemented are much more complicated than
possible, as often they first use some slow method to get
close, then a fast method to finish off. In fact, there are many
methods for doing optimization – a fact that may need to be
considered to get an answer in some cases.

The basic R function for optimization we consider here
is optim. Later, the mle2 function will be illustrated. Here
we see how to use optim to get the minimum value of the
negative log likelihood graph.

We need a good guess for the intial parameters. Eyeballing
from the graph may lead you to guess a value. We will take
0.2.

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 4

Next, we need an R function of a single variable which may
be a vector of values. We are already there in this case.

To use the default optization method then is simply:

> out <- optim(par=c(0.2), negLL)

Did it work? (It doesn’t always.) We can check, does this
give a value of 0:

> out$convergence

[1] 0

So far so good, the actual parameter estimated is found with

> out$par

[1] 0.2519922

Using mle2 to do optimization

We can use the mle2 function to do the work above. The call
is straightforward, but a bit different. The initial values can
be specified, or found from the default values of the function.
To use this approach we wrap our function as follows: Otherwise, we can pass in the starting

values to mle2 through its start

argument.> f <- function(p=0.5) negLL(p)

Then we call the optimization with

> library(bbmle)

> out <- mle2(f)

> out

Call:

mle2(minuslogl = f)

Coefficients:

p

0.2520009

Log-likelihood: -44.91

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 5

The output has the estimated coefficient shown. The differ-
ent here is that the out value has various methods defined for
it that make getting values out familiar to R users.

For example, There is randomness involved here in the
estimate. How to account for that? Often a point estimate
has a confidence interval associated with it. Here we have
that:

> confint(out)

2.5 % 97.5 %

0.2152764 0.2912618

A summary of the coefficients is given by:

> summary(out)

Maximum likelihood estimation

Call:

mle2(minuslogl = f)

Coefficients:

Estimate Std. Error z value Pr(z)

p 0.252001 0.019416 12.979 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-2 log L: 89.82914

There p-value, Pr(z) is for a hypothesis test that p is 0,
so it is no suprise that it is small. What we see also is the
standard error. The advantage of likelihood methods is that
asymptotically things are normally distributed, so standard
errors contain a lot of information.

Question 0.3. Explain why there is no surprise above.

multiple parameters

Many problems have more than one parameter. A toy case is
the normal distribution with both a mean and standard devi-

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 6

ation. Imagine we have a random sample, which we generate
with:

> mu=10; sigma=1

> x <- rnorm(25, mu, sigma)

What is the likelihood function? Similar to above, only it
depends on two values:

> negLL <- function(mu, sigma) -sum(dnorm(x, mu, sigma, log=TRUE))

However, we have one catch that proves useful in many
cases. Optimization can run into issues when boundaries are
involved, such as σ > 0 as it is a standard deviation. Often
a transformation proves useful. In this case, taking logs can
work. So instead of sigma we write our function in terms of
the log of sigma:

> negLL <- function(mu=0, lsigma=0) -sum(dnorm(x, mu, exp(lsigma), log=TRUE))

Not really harder to do – but you need to remember to do it.
Visualizing such a function requires a more complicated

graphic. We use a contour plot. To make these we have to
genearate x and y values and then the z values. Here is one
way. Suppose we look for means in the area 5 to 15 and log
sigma in the range −1 to 1:

> x <- seq(5, 15, length=100)

> y <- seq(-1, 1, length=100)

> d <- expand.grid(x,y); names(d) <- c("x","y")

> d$negLL <- sapply(1:nrow(d), function(i) negLL(d$x[i], d$y[i]))

This bit is tricky. We make a data frame of all possible com-
biations of the x and y variables. Then we want to call the
function on these values. To do this, we have some fancy R

command which for each row, does exactly that. We do this,
as our negative log likelihood isn’t vectorized.

Once done, we can plot using contourplot from the lat-

tice package:

> library(lattice)

> print(contourplot(negLL ~ x + y, data=d))

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 7

x

y

−0.5

0.0

0.5

6 8 10 12 14

2000

4000 4000
6000 6000

8000 800010000 10000

Figure 3: Contourplot of negative log
likelihood. Parameter values are
where this shows minimum value. Not
so easy to see on this graphic.

Not too great, we should narrow down the range of values
we looked at.

Question 0.4. Do that – narrow down the viewing window
to make a better contour plot.

Anyways, the contour plot shows us roughly where the
value is, the optimization routine tells us exactly.

Since we wrote the negative log likelihood function to have
default values, the call to mle2 works exactly as before. The shortest call to mle2 is to just

pass in the objective function as done
here. There are other options. For
example, one can pass in a formula
to specify a model, one can specify
starting values, the algorithm for
optimization, a list of fixed parameter
values (so these are not optimized
over), etc.

> out <- mle2(negLL)

> coef(out)

mu lsigma

9.999738 1.070227

> summary(out)

Maximum likelihood estimation

Call:

mle2(minuslogl = negLL)

Coefficients:

Estimate Std. Error z value Pr(z)

mu 9.999738 0.291604 34.292 < 2.2e-16 ***

lsigma 1.070227 0.070717 15.134 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-2 log L: 497.8141

Question 0.5. Fit the above as shown. Then make a second
fit, only this time call

> out.1 <- mle2(negLL, method="L-BFGS-B")

Is there a difference? This just uses a different method to do
the optimization.

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 8

How do we do? We can ask if the paramters – known in
this case – sit in the confidence intervals:

> confint(out)

2.5 % 97.5 %

mu 9.4229469 10.577053

lsigma 0.9376736 1.215435

But the one is for the log of sigma. We exponentiate to get
back to the original scale:

> exp(confint(out)[2,])

2.5 % 97.5 %

2.554033 3.371759

Some examples and questions

Lets look at a data set from the emdbook package on pine
cones for a certain type of fir. This is time series data, but we
will not consider that. Rather we look at the simple relation-
ship between total number of cones TOTCONES and the size
of the tree measured through the “diameter at breast height”
DBH. This is a favorite variable often

accompanied with a side story of how
Europe and America measure “breast”
at a different height.

First, we look at the distribution of cones. To this we fit an
exponential model using likelihood.

We first plot a histogram. Based on the graph we estimate
the mean to be around 100, so the rate is 1/100:

> library(emdbook)

> data(FirDBHFec)

> hist(FirDBHFec$TOTCONES, prob=TRUE)

> curve(dexp(x, rate=1/100), add=TRUE)

Histogram of FirDBHFec$TOTCONES

FirDBHFec$TOTCONES

D
en

si
ty

0 50 100 150 200 250 300

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Figure 4: Histogram of total number
of cones for all trees. The exponential
curve was drawn with parameter
found by first guessing the mean
(around 100) then remembering that R
uses the rate or the reciprocal of the
mean.

To fit this with mle2 we have:

> negLL <- function(lr=log(1/100))

+ -sum(dexp(x, rate=exp(lr), log=TRUE))

(We reparameterized the rate to avoid having a “boundary”
at 0.) This data has missing values which will cause prob-
lems. As such, we reduce to the case where there are values.

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 9

> ind <- !is.na(FirDBHFec$TOTCONES)

> x <- FirDBHFec$TOTCONES[ind]

Now we can call mle2

> out <- mle2(negLL)

Our estimated mean is

> 1/exp(coef(out))

lr

49.89576

This is a toy model, the likelihood function can be ap-
proached analytically and the answer for this distribution will
always just be related to the sample mean.

Question 0.6. The number of total cones might also have
a Poisson distribution, rather than an exponential. These
are related, but one is discrete so is commonly used for such
counts. Fit the total cone data using a Poisson distribution
and compare rates. (The parameter lambda is the mean, not
the reciprocal of the mean.)

Question 0.7. Make a plot of the negative log likelihood
function you found above. Does it have a flat bottom or is it
more “peaked?” Why is this question even of interest?

Question 0.8. Make a histogram of the data, then compare
with the values of a confidence interval based on the Poisson
fit. (You will need to take the exponential of the output from
confint.)

We can use likelihood to do regression models. Imagine we
assume a slight variation to the standard regression model,
rather than assume normally distributed error terms, we use
a double exponential. The density for this is similar to what
we just used. The rate will depend on the mean which in
turn depends in our model on the diameter at breast height.
As such, a likelihood function for this is: The bit y-(a+b*x) models the error

term by an exponential. The double
bit is why the (1/2) is there along
with the abs function.

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

maximum likelihood estimation 10

> negLL <- function(lr=log(1/50), a=.75, b=15)

+ -sum((1/2)*dexp(abs(y - (a + b*x)), rate=exp(lr),

+ log=TRUE))

Again we address the issue with NA values

> d <- subset(FirDBHFec, select=c("TOTCONES","DBH"))

> d <- d[complete.cases(d),]

> y <- d$TOTCONES; x <- d$DBH

> out <- mle2(negLL)

Now we compare our fit with the standard regression
model:

> plot(TOTCONES ~ DBH, data=d)

> abline(lm(TOTCONES ~ DBH, data=d),

+ lty=2, lwd=2, col="red")

> abline(a=coef(out)['a'], b=coef(out)['b'],
+ lwd=2, col="blue")

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

4 6 8 10 12 14 16

0
50

10
0

15
0

20
0

25
0

30
0

DBH

TO
T

C
O

N
E

S

Figure 5: Regression fits. The dashed
line with an assumption of normally
distributed error terms, the solid line
with double-exponential assumption.

Question 0.9. Does the regression model approach above
give the same answer if normal error terms were assumed.
Investigate. A possible function to consider is:

> negLL <- function(ls=log(20), a=0, b = 55)

+ -sum(dnorm(y - (a + b*x), sd=exp(ls), log=TRUE))

Question 0.10. We can’t visualize this negative log likeli-
hood with a contour plot, as it has 3 variables – not 2. The
profile method computes profiles – as described in the text.
These are used to give confidence intervals. To see a graphic,
one has

> plot(profile(out))

where out holds the output of a call to mle2.
These graphs indicate confidence intervals for the parame-

ters computed by accounting for changes to all the parame-
ters (unlike slices). The 95% should correspond to that from
confint. Does it?

www.math.csi.cuny.edu/verzani/classes/MTH703 – March 13, 2010

	Defining a likelihood function
	The logarithm

	Using optim to find minimum values
	Using mle2 to do optimization
	multiple parameters
	Some examples and questions

