
functions 1

Plotting and defining functions in R

We use functions in two ways in this project. The first is
(hopefully) more familiar, the second is how we will proceed
in the rest of the class. We will get to that in Section .

Our first analogy will be functions as they are used in de-
scribing population distributions. R has a number of built in
populations, we will show how to define new ones in Section .

The function dnorm computes the density of a normal dis-
tribution. We know that a normal has two paramters – a
mean, µ, and a standard deviation σ . As such, dnorm has
two additional argument, here called mean and sd:

> dnorm(0)

[1] 0.3989423

> dnorm(0, mean = 1)

[1] 0.2419707

> dnorm(0, mean = 1, sd = 2)

[1] 0.1760327

In the first case, the default values of mean=0 and sd=1 are
used. The second specifies a value for mean (leaving sd its
default). The third uses no default values.

The variables are vectorized which is important, especially
for the first or x value. By this we mean that if the x value
stores several numbers, the function will compute several
values. For example:

> x <- c(0, 1, 2, 3)

> dnorm(x)

[1] 0.398942280 0.241970725 0.053990967 0.004431848

Among the other built in R functions for distributions are
dt, for the t-distribution; dunif, for the uniform distribution;
and dexp, for the exponentail distribution,

To plot a function on a graph can be done with the curve

function 1 1 curve does nothing more than find a
bunch of x values, apply the function
to generate y values then make a plot
of the x and y values by plotting them
and connecting with line segments
(dot-to-dot).

For example,

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 2

> curve(dnorm(x), from = -3, to = 3)

Or

> curve(dnorm(x, mean = 10, sd = 10), from = -20, to = 40)

Question 0.1. Make a plot of the exponential distribution
dexp from 1 to 100. Afterwards, replot using a sensible range
for the x values. What values did you think sensible?

The curve function will make a new plot, as above, when
we specify values of from and to. If there is a current plot,
we can add a function with the argument add=TRUE. For
example,

> x <- rnorm(100, mean = 100, sd = 30)

> hist(x, main = "Histogram with density", probability = TRUE)

> curve(dnorm(x, mean = 100, sd = 30), add = TRUE)
Histogram with density

x

D
en

si
ty

0 50 100 150 200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Figure 1: Histogram with density
added by curve. To make this work,
the histogram is created so its total
area adds to 1. The curve function
has the argument add=TRUE to get the
function to appear on the current
plot.

Question 0.2. Create these values for x:

> x <- rexp(100)

Make a histogram, then layer on the density (dexp).

Question 0.3. The argument for curve, lwd=2, makes lines
twice as wide, lty=2 specifies a different line type, and the
argument col="blue" draws a line in blue. (You can of
course you different widths and colors.) These are useful
when you have more than one curve on the same graphic.
Explore these values by redoing the above graphic.

The function keyword

To create your own function is not to difficult. The only trick
– and it isn’t necessary, but is good form – is to make your
function accept vectorized arguments.

The keys to defining a function are:

Declaring it is a function using the function keyword
All function definitions begin with the keyword func-

tion.

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 3

Define the variables you want A function can have 0, 1
or many variables. Many of the functions we use have
1 or more parameters in addition to the x value(s). For
example the arguments of dnorm include x, mean and
sd.

Compute the return value, then make sure it is returned
A function consists of a bunch of steps that turn the
input into the output value. The value returned (or
outputted by the function) is the last value created. Of
then the return function is used to make this unam-
biguous.

For example, to define a function to do f (x) = x2, we have

> f <- function(x) {

+ x^2

+ }

And to use it:

> a <- 1:3

> f(a)

[1] 1 4 9

The keyword function on the right hand side says make a
new fuction. We assign this to the variable f, but it could be
any valid variable. The (x) part contains the argument. In
the call (f(a)) we show that the value in the call need not be
named x, as the position is used to match arguments. In this
example, the only command executed is also the last which
here squares the number and returns it. From the call of the
function, we can see it is vectorized.

The arguments to the function are specified within the
parantheses. There can be 0, 1, or more than 1 specified.

The braces make a command block. The return value of
the last command executed is returned. In this case, the
command x2̂ is the last one, so this is returned.

Question 0.4. Make a function to find f (x) = 5 + 6x. Plot
over the interval [0,10].

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 4

Question 0.5. Make a function to find f (x) = ex/(1 + ex).
What is the value at 1? Plot over the interval [−10,10]. (You
use exp(x), not e^x)

Arguments
The value of x is passed into the function call through

function arguments. In this example, there is only the one,
but we see that most of our functions have a parameter fam-
ily. These values may be specified too by the user, but the
programmer must alert the function.

We may want to have paramters with defaults. For exam-
ple, a triangle distribution has the basic shape of an equilat-
eral triangle from −1 to 1 with a peak at 1. (This has area
1). To program this in, we have

> f <- function(x) {

+ if (x < -1)

+ 0

+ else if (x < 0)

+ 1 + x

+ else if (x < 1)

+ 1 - x

+ else 0

+ }

We used if and else, but hopefully the logic is clear,
To specify a function with parameters, we essentially relate

a function with a different mean and scale according to

g(x;c,h) =
1
h

f (
x− c

h
)

The bit x−c
h is like a z score, the outside 1/h keeps the area

equal to 1. So to make triangle distribution with mean mean

and scale h we could have:

> g <- function(x, mean = 0, h = 1) (1/h) * f((x - mean)/h)

> g(0)

[1] 1

> g(0, mean = 1)

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 5

[1] 0

> g(0, mean = 1, h = 2)

[1] 0.25

When an argument is specified as name=value, the value is
the default value for the argument and need not be specified.
In the above, we call the first value by “position” and the
others by “name.” Calling by name is clearer to read, but
calling by position involves less typing. Often it wins out.

However we are not done with our triangle example, we can
not graph this function with curve – it is not vectorized. To
do so, we get a bit fancy with our definition of f so that it is
vectorized. 2 2 You won’t need to be this fancy

unless you go off on your own. The
pmax and pmin functions are vectorized
max and min functions, and sign just
gives a 1 if positive and −1 if negative
(basically x/|x|).

> f <- function(x) {

+ 1 - sign(x) * pmax(pmin(x, 1), -1)

+ }

With this defined, we can make some plots:

> curve(g(x), from = -2, to = 2, lty = 1)

> curve(g(x, mean = 1), add = TRUE, lty = 2)

> curve(g(x, mean = -1, h = 2), add = TRUE, lty = 3)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

g(
x)

Figure 2: Three triangle distributions
differing by choices of parameters.

Question 0.6. Make a function in R to do the following

f (x;a,b) = axe−bx.

Make a plot of f (x;2,2) over the interval 0 to 5. What is the
maximum value? Where does it occur?

Question 0.7. Make a function in R to do the following

f (t;a,k, t0) = a(1− ek(t−t0)), t > t0

Use x for the main argument (t above).
Plot with a = 10, k = 2 and t0 = 1. Plot over the interval

[1,10]. Describe the shape.

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 6

Adjusting parameters

Most functions fall in families. A family of functions shares
common featurs – bell shaped, long tailed, certain decay, S-
shaped, ... – but there will be parameters that can be tuned
to fit the scale of the problem at hand.

An example, which you have encountered before, comes
from the idea of a probability distribution. Recall, for a con-
tinuous distribution, the area under the curve between a and
b represents a probability that a random number is in [a,b].
For example, the normal curve provides such a curve. You re-
member that the normal curve is in a family with parameters
µ and σ . We now these as the mean and standard deviation,
but more generally they represent the center and scale of the
data. For the normal curve, you used the fact that finding
the z-score (z = (x−µ)/σ) allows one table to be used for all
normals. You may also recall that for the t distribution, this
wasn’t the case, so you used a restricted table.

One of the keys to fitting models is to find the right pa-
rameters. This will be done with mathematical optimization
routines, but these often require good starting values. These
are often found by “eye-balling” the data and guessing ini-
tial values, or by fitting a function to the data and adjusting
parameters until it “looks right.”

We begin with a demonstration where we adjust parame-
ters of a probability distribution to match the data, as rep-
resented by a histogram. This may not work – I didn’t get
a chance to test – but to try we first download and install a
package for R: 3 3 The traitr package requires some

other software to be installed on the
computer you work at and so may not
work for you.

> install.packages("traitr")

If that is successful, you can download the following file:

> f <- "http://www.math.csi.cuny.edu/verzani/classes/MTH703/Data/explore-params.R"

> source(f)

This creates two demos where you can adjust sliders to try
and fit a density to a histogram. The normal distribution
with two parameters – the mean and standard deviation; and
the exponential distribution with its one parameter – in this

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 7

case the mean. To do this, you eyeball the mean and spread
then adjust the parameter values. You can check by clicking
the help button, and play again by clicking the OK button.
The two demos are run with either

> do_norm()

> do_exp()

Figure 3: GUI for exploring how a
density can be adjusted to “fit” the
histogram. The density is a
theoretical model for the sample data
summarized by the histogram.

Functions for fitting trends

A more common usage in this class for functions is to use
them to describe trends in data. The basic idea employed in
this class is our response variable depends on the predictor(s).
The response can be regrarded as

response = model + random error

The model is a function of the predictor values that speci-
fies the mean value of the response. The “random error” part
specifies this is a statistical model, where we don’t assume we
can model the exact value of the response, rather we model
the mean value (using the model part) and describe the ran-
dom bit using a distribution.

This is exactly the assumptions behind simple linear regres-
sion where the model is written

yi = β0 + β1xi + εi,

where the the model is linear: (β0 + β1x is the equation of
a line with slope β1 and intercept β0) and we make the as-
sumption that the εi values are independent and normally
distributed.

To explore how the parameters affect the model, you can
try the demo do_lm.

This class introduces numerous other functions into the
mix beyond the linear model.

We will use a data set on predator prey relationships
by Sinclair et al. 2003, Patterns of Predation in a diverse
predator-prey system Nature 425, 288-290 (18 September
2003).

You can get it with:

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 8

> f <- "http://www.math.csi.cuny.edu/verzani/classes/MTH703/Data/prey-mortality.csv"

> pm <- read.csv(f)

> g <- "http://www.math.csi.cuny.edu/verzani/classes/MTH703/Data/prey-range.csv"

> pr <- read.csv(g)

The pm data is from the prey’s perspective, the pr from the
predators. Run the str function to find out more about the
new data sets.

We fit a few models by guessing parameters.

Linear model

We warm up with a linear model. Our function might look
like

f (x;a,b) = a + bx

which is coded into R as

> f <- function(x, a = 0, b = 0) a + b * x

For a predator, the maximum size of its prey is related to
the predator’s size. We plot the data and try a linear fit:

> plot(max.prey ~ wt, pr)

> curve(f(x, a = 0, b = 500/150), add = TRUE)

Question 0.8. Adjust the parameters to see if you can get a
better fit.

Question 0.9. As there is a wide range of weights and
clumping near 0, it might be better to compare on a log-log
scale. With that in mind, redo the plot with:

> plot(log(max.prey) ~ log(wt), pr)

Then add a curve until you get one that seems to fit best.

Hockey stick model

The hockey stick model is one with a constant value for some
period and a linearly increasing or decreasing value before
or after. The function is marked by a) a slope and intercept
when it is increasing, b) a point when it changes. The latter
is actually easier to specify in terms of the maximum (or
minimum value). Here is an R function to do one type of
hockey stick.

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

functions 9

> hs <- function(x, a = 0, b = 0, sat = 0) {

+ pmin(sat, a + b * x)

+ }

For the predator mortality rate data in pm we have that
this increase as there are more predators – if everyone is
hunting for you, you are less likely to live to a ripe old age.
We plot the data and draw on a possible fit with these com-
mands:

> plot(pred.mortality.perc ~ no.predators, pm)

> curve(hs(x, a = 0, b = 30, sat = 100), add = TRUE) ●

●

●

●

●●

●

●

●

●

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0

no.predators

pr
ed

.m
or

ta
lit

y.
pe

rc

Figure 4: Data with hockey stick fit.
Above a certain number of predators,
a prey is almost certain to be killed by
one.

Question 0.10. Plot the above. Adjust the parameters to
better fit the data. In order to do so, you need to figure out
what a, b and sat represent. What do you find?

Exponential decay

The relationship between number of predators and body
weight is basically that larger animals have fewer predators.
But how to quantify that? We plot the data, and then fit two
models – a hockey stick, and a modified exponential. Here
are the function families. (We redo hs, can you tell why?)

> hs <- function(x, a = 0, b = 0, sat = 0) pmax(sat, a + b * x)

> e <- function(x, a = 0, k = 1, x0 = 0, sat = 0) {

+ sat + (a - sat) * exp(-k * (x - x0))

+ }

These commands start the fit.

> plot(no.predators ~ wt, pm)

> curve(hs(x, a = 7, b = -1/200, sat = 0), add = TRUE)

> curve(e(x, a = 7, k = 1/200, x0 = 0, sat = 0), add = TRUE)

Question 0.11. Adjust the parameters above to find the
best fit. What is better the exponential or the hockey stick?
Why?

www.math.csi.cuny.edu/verzani/classes/MTH703 – February 13, 2010

	Plotting and defining functions in R
	The function keyword
	Adjusting parameters

	Functions for fitting trends
	Linear model
	Hockey stick model
	Exponential decay

