Sample questions for test 2

There may be other types of questions, but being able to do these should mean you will do well on this test.

using MTH229

Zeros

f(x) = x^5 - x + 1
fzeros(f)
1-element Array{Real,1}:
 -1.1673

There is just one, as this graph suggests

plot(f, -2, 2)
plot!(zero, -2, 2)
f(x) = x^3 - 9x^2 + 26x - 24
plot(f, 0,6)

Is [0,6] a bracketing interval?

What is the answer?

(Is 1 counted in your answer?)

Limits

$$~ \lim_{x \rightarrow 0} \frac{\sqrt{x + 25} - 5}{x} ~$$
$$~ \lim_{x \rightarrow 0} \frac{|x|}{x} ~$$
$$~ \lim_{x \rightarrow 0} \frac{(3+x)^{-1} - (3-x)^{-1}}{x} ~$$
$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$
$$~ \lim_{x \rightarrow 0} \frac{\sqrt{x + 25} - 5}{x} ~$$
$$~ \lim_{x \rightarrow 0} \frac{|x|}{x} ~$$
$$~ \lim_{x \rightarrow 0} \frac{(3+x)^{-1} - (3-x)^{-1}}{x} ~$$
$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$
$$~ \lim_{x \rightarrow 0}\frac{\sqrt{1+x} - \sqrt{1-x}}{x}. ~$$
$$~ \lim_{x \rightarrow 4} \frac{x^{3/2} - 8}{x-4} ~$$

(Use: f(x) = (x^(3//2) - 8) / (x - 4).)

$$~ \lim_{x \rightarrow 0} \frac{|x|}{x}. ~$$
$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$