Sample questions for test 2

There may be other types of questions, but being able to do these should mean you will do really well on this test.

using Roots, Plots, SymPy

Limits

$$~ \lim_{x \rightarrow 0} \frac{\sqrt{x + 25} - 5}{x} ~$$

A: We make the function then plot near 0:

f(x) = (sqrt(x + 25) - 5) / x
plot(f, -1, 1)
-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -4 -2 0 2 4 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 y1 0.0960 0.0965 0.0970 0.0975 0.0980 0.0985 0.0990 0.0995 0.1000 0.1005 0.1010 0.1015 0.1020 0.1025 0.1030 0.1035 0.1040 0.1045 0.0965 0.0966 0.0967 0.0968 0.0969 0.0970 0.0971 0.0972 0.0973 0.0974 0.0975 0.0976 0.0977 0.0978 0.0979 0.0980 0.0981 0.0982 0.0983 0.0984 0.0985 0.0986 0.0987 0.0988 0.0989 0.0990 0.0991 0.0992 0.0993 0.0994 0.0995 0.0996 0.0997 0.0998 0.0999 0.1000 0.1001 0.1002 0.1003 0.1004 0.1005 0.1006 0.1007 0.1008 0.1009 0.1010 0.1011 0.1012 0.1013 0.1014 0.1015 0.1016 0.1017 0.1018 0.1019 0.1020 0.1021 0.1022 0.1023 0.1024 0.1025 0.1026 0.1027 0.1028 0.1029 0.1030 0.1031 0.1032 0.1033 0.1034 0.1035 0.1036 0.1037 0.1038 0.1039 0.1040 0.1041 0.096 0.098 0.100 0.102 0.104 0.0962 0.0964 0.0966 0.0968 0.0970 0.0972 0.0974 0.0976 0.0978 0.0980 0.0982 0.0984 0.0986 0.0988 0.0990 0.0992 0.0994 0.0996 0.0998 0.1000 0.1002 0.1004 0.1006 0.1008 0.1010 0.1012 0.1014 0.1016 0.1018 0.1020 0.1022 0.1024 0.1026 0.1028 0.1030 0.1032 0.1034 0.1036 0.1038 0.1040

Near 0, the y value is going towards 0.1.


$$~ \lim_{x \rightarrow 0} \frac{|x|}{x} ~$$

We plot and look:

f(x) = abs(x) / x
plot(f, -1, 1)
-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -4 -2 0 2 4 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 y1 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -4 -2 0 2 4 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

There is a left limit of $-1$, a right limit of $1$ but no limit at $c=0$.


$$~ \lim_{x \rightarrow 0} \frac{(3+x)^{-1} - (3-x)^{-1}}{x} ~$$
f(x) = ( (3 + x)^(-1) - (3-x)^(-1) ) / x
plot(f, -1, 1)
-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 -4 -2 0 2 4 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 y1 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.281 -0.280 -0.279 -0.278 -0.277 -0.276 -0.275 -0.274 -0.273 -0.272 -0.271 -0.270 -0.269 -0.268 -0.267 -0.266 -0.265 -0.264 -0.263 -0.262 -0.261 -0.260 -0.259 -0.258 -0.257 -0.256 -0.255 -0.254 -0.253 -0.252 -0.251 -0.250 -0.249 -0.248 -0.247 -0.246 -0.245 -0.244 -0.243 -0.242 -0.241 -0.240 -0.239 -0.238 -0.237 -0.236 -0.235 -0.234 -0.233 -0.232 -0.231 -0.230 -0.229 -0.228 -0.227 -0.226 -0.225 -0.224 -0.223 -0.222 -0.221 -0.220 -0.219 -0.218 -0.217 -0.216 -0.215 -0.214 -0.213 -0.212 -0.211 -0.210 -0.209 -0.208 -0.207 -0.206 -0.205 -0.204 -0.203 -0.202 -0.201 -0.200 -0.199 -0.198 -0.197 -0.196 -0.195 -0.194 -0.193 -0.192 -0.191 -0.190 -0.30 -0.25 -0.20 -0.15 -0.282 -0.280 -0.278 -0.276 -0.274 -0.272 -0.270 -0.268 -0.266 -0.264 -0.262 -0.260 -0.258 -0.256 -0.254 -0.252 -0.250 -0.248 -0.246 -0.244 -0.242 -0.240 -0.238 -0.236 -0.234 -0.232 -0.230 -0.228 -0.226 -0.224 -0.222 -0.220 -0.218 -0.216 -0.214 -0.212 -0.210 -0.208 -0.206 -0.204 -0.202 -0.200 -0.198 -0.196 -0.194 -0.192 -0.190

The answer is the $y$ value as $x$ goes to $0$, or by mousing about $-0.222$.


$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$

Here we need to be careful when we plot– we need a right limit and $f(1)$ is undefined, so we choose $(0,1/2)$:

f(x) = log(1/abs(x))^(-1/32)
plot(f, 0, 1/2)
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 -0.50 -0.48 -0.46 -0.44 -0.42 -0.40 -0.38 -0.36 -0.34 -0.32 -0.30 -0.28 -0.26 -0.24 -0.22 -0.20 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 -0.5 0.0 0.5 1.0 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 y1 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 -2 0 2 4 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

The limit looks to be about $0.94$ – but something looks amiss.

$$~ \lim_{x \rightarrow 0} \frac{\sqrt{x + 25} - 5}{x} ~$$

We can make a table with lim, but that isn't a standard function. Rather, we just take some values near c:

f(x) = (sqrt(x + 25) - 5) / x
f(0.1), f(0.01), f(0.001), f(0.0001)
(0.09990019950139484,0.09999000199947261,0.0999990000201123,0.09999989999620595)

Looks like $0.1$ is the answer.


$$~ \lim_{x \rightarrow 0} \frac{|x|}{x} ~$$

If we aren't careful to look at both left and right we will be misled:

f(x) = abs(x)/x
f(0.1), f(0.01), f(0.001), f(0.0001)
(1.0,1.0,1.0,1.0)

shows 1.0 as the obvious answer, but this is to the question of a right limit. To see the left, we have:

f(-0.1), f(-0.01), f(-0.001), f(-0.0001)
(-1.0,-1.0,-1.0,-1.0)

with $-1.0$ as the answer. Two limits means no limit.


$$~ \lim_{x \rightarrow 0} \frac{(3+x)^{-1} - (3-x)^{-1}}{x} ~$$
f(x) = ( (3 + x)^(-1) - (3-x)^(-1) ) / x
f(0.1), f(0.01), f(0.001), f(0.0001)
(-0.2224694104560626,-0.22222469138545864,-0.2222222469135393,-0.22222222246959245)

Again we see in support of our graph, an answer of $-0.222... = -2/9$.


$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$

For the right limit we look close to $0$ on the right:

f(x) = log(1/abs(x))^(-1/32)
f(0.1), f(0.01), f(0.001), f(0.0001)
(0.9742732077388627,0.9533965419338172,0.9413924707884264,0.9329672200274579)

You might guess the answer is $0.93...$ from this.

$$~ \lim_{x \rightarrow 0}\frac{\sqrt{1+x} - \sqrt{1-x}}{x}. ~$$
f(x) = (sqrt(1+x) - sqrt(1-x)) / x
limit(f, 0)
$$1$$

$$~ \lim_{x \rightarrow 4} \frac{x^{3/2} - 8}{x-4} ~$$
f(x) = (x^(3//2) - 8) / (x-4)   ## this one is subtle x^(3/2) doens't work
limit(f, 4)
$$3$$

$$~ \lim_{x \rightarrow 0} \frac{|x|}{x}. ~$$

A nieve answer is wrong:

f(x) = abs(x)/x
limit(f, 0)
$$1$$

Why? The limit function gives the right limit by default. Here, the left limit isn't the same:

limit(f, 0, dir="-")
$$-1$$

So, no limit, as there are different left and right limits


$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$
f(x) = log(1/abs(x))^(-1/32)
limit(f, 0)
$$0$$

Wait, the graph and table showed the limit to be around $0.93$. Which is right?

Derivatives

We assume you have run the following code:

using Roots
Base.ctranspose(f::Function) = D(f)
ctranspose (generic function with 40 methods)
f(x) = sin(x)
a, b = -pi/3, pi/3
(f(b) - f(a)) / (b-a)
0.8269933431326881
f'(-pi/3), f'(pi/3)
(0.5000000000000001,0.5000000000000001)
c = pi/3
h = 1e-6
(f(c+h) - f(c)) / h
0.4999995669718871

Close to the answer, but not precisely so.

fpapprox = (f(c+h) - f(c)) / h
f'(c) - fpapprox
4.330281130338065e-7

So the error is about the same size as the step size h.

$$~ y(t) = -16t^2 + 25t + 5, \quad t \geq 0 ~$$

Find the rate of change of height at time $t=1$. Find the rate of change of height at the instant the arrow strikes the grount.

f(t) = -16t^2 + 25t + 5
f'(1)
-7.0

For the other, we need to first solve for $t$. We can see that between 0 (when the arrow is at 5) and $3$ (where $f(3) < 0$) we have a zero.

plot(f, 0, 3)
-4 -3 -2 -1 0 1 2 3 4 5 6 7 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 -3 0 3 6 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 y1 -200 -175 -150 -125 -100 -75 -50 -25 0 25 50 75 100 125 150 -175 -170 -165 -160 -155 -150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 -200 -100 0 100 200 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

So $[0,3]$ is a bracketing interval:

t0 = fzero(f, 0, 3)
1.7419016343087124

We use this value to find the rate of change at:

f'(t0)
-30.740852297878796
V(t) = 10 * (1 - t/100)^2
V (generic function with 1 method)

The average rate of change is just a secant line computation:

a, b= 0, 100
avg = (V(b) - V(a)) / (b-a)
-0.1

We use fzeros to find all values where $V(t)$ takes this value. For that we need a new function:

f(t) = V'(t) - avg
fzeros(f, a, b)
1-element Array{Float64,1}:
 50.0

(The mean value theorem guarantees that we will find at least 1 zero here.) We graph to verify:

tangent(f,c) = x -> f(c) + f'(c) * (x-c)
secant(f, a, b) = x -> f(b) + (f(b)-f(a)) / (b-a) * (x-b)
plot(V, a, b, linewidth=5)
plot!(tangent(V, 50))
plot!(secant(V, 0, 100))
-150 -100 -50 0 50 100 150 200 250 -100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 -100 0 100 200 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 y1 y2 y3 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 -20.0 -19.5 -19.0 -18.5 -18.0 -17.5 -17.0 -16.5 -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 -20 0 20 40 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

First and second derivatives

We plot and look:

f(x) = x * airy(x)
plot(f, -3, 3)
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -9.0 -8.8 -8.6 -8.4 -8.2 -8.0 -7.8 -7.6 -7.4 -7.2 -7.0 -6.8 -6.6 -6.4 -6.2 -6.0 -5.8 -5.6 -5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 -10 -5 0 5 10 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 y1 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 -3.5 -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 -4 -2 0 2 4 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

positive: $(-3, -2.3)$ and $(0,3)$.

increasing: $(-1.5, 0.6)$

concave up: $(-2.4, -0.5)$ and $(1.7, 3)$.

These values are "eye-balled". You can get more precise if you used plotif: (plotif(f,f,a,b) for positive, plotif(f,f',a,b) for increasing and plotif(f,f'',a,b) for concave up.)

The critical points are the zeros of $f'(x)$

f(x) = 2x - x^2/6 - x^3/9
plot(f, -4,4)
-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -20 -10 0 10 20 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 y1 -15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 -20 -10 0 10 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Plotting $f$ over the $(-4,4)$ shows the cubic polynomial will have both its peaks in that interval, so we can use fzeros there:

cps = fzeros(f', -4, 4)
2-element Array{Float64,1}:
 -3.0
  2.0

The values of the second derivative are:

map(f'', cps)
2-element Array{Float64,1}:
  1.66667
 -1.66667

The first is positive – relative minimum, the second negative – relative maximum – as the graph showed already.

We plot to the right of $0$ – to avoid the asymptote – to look:

f(x) = 1/x + x
plot(f, .1, 3)
-4 -3 -2 -1 0 1 2 3 4 5 6 7 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 -3 0 3 6 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 y1 -20 -15 -10 -5 0 5 10 15 20 25 30 35 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 -20 0 20 40 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Looks like just one critical point and it is in this interval:

fzeros(f', .1, 3)
1-element Array{Float64,1}:
 1.0

We have $f''(1) > 0$, so as the graph shows a relative minimum occurs at this critical point.

f''(1)
2.0
f(x) = 2x - x^2/6 - x^3/9
plot(f, -6, 5)
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 -25.0 -24.5 -24.0 -23.5 -23.0 -22.5 -22.0 -21.5 -21.0 -20.5 -20.0 -19.5 -19.0 -18.5 -18.0 -17.5 -17.0 -16.5 -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 -40 -20 0 20 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 y1 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 -40 -20 0 20 40 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

The graph shows the "action" all happens between $-6$ and $5$, so we look there:

ips = fzeros(f'', -6, 5)
1-element Array{Float64,1}:
 -0.5

The value of $-1/2$ is found. Clearly this will be an inflection point, as the graph changes concavity. If you don't believe this, we can graph to see $f''(x)$ changing sign at $-1/2$:

plot(f'', -6, 5)
scatter!(ips, 0*ips)   # add the point
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 -25.0 -24.5 -24.0 -23.5 -23.0 -22.5 -22.0 -21.5 -21.0 -20.5 -20.0 -19.5 -19.0 -18.5 -18.0 -17.5 -17.0 -16.5 -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 -40 -20 0 20 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 y1 y2 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -20 -10 0 10 20 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
f(x) = x^3 - 3x + 5
cps = fzeros(f', -5, 5)
2-element Array{Float64,1}:
 -1.0
  1.0

We plot $f'$ to see how it changes sign:

plot(f', -2, 2)
scatter!(cps, 0*cps)   # add points
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -6.0 -5.8 -5.6 -5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 -6 -3 0 3 6 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 y1 y2 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 -20.0 -19.5 -19.0 -18.5 -18.0 -17.5 -17.0 -16.5 -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 -20 0 20 40 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

At $-1$ the derivative changes sign from plus to minus – a relative max for $f(x)$.

At $1$ the derivative changes sign from minus to plus – a relative min.

A graph over $[-3, 20]$ shows the general shape. (Picked by trial and error!)

f(x) = x^2 * exp(-x/3)
plot(f, -3, 20)
-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 -50 0 50 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 y1 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 -25 0 25 50 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

There should be two critical points:

cps = fzeros(f', -3, 20)
2-element Array{Float64,1}:
 -0.0
  6.0

The graph of the derivative shows the change of sign:

plot(f', -1, 7)
scatter!(cps, 0*cps)
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 -10 0 10 20 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 y1 y2 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -10.0 -9.8 -9.6 -9.4 -9.2 -9.0 -8.8 -8.6 -8.4 -8.2 -8.0 -7.8 -7.6 -7.4 -7.2 -7.0 -6.8 -6.6 -6.4 -6.2 -6.0 -5.8 -5.6 -5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 -10 -5 0 5 10 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

The critical point of 0 sees a change of sign in $f'(x)$ from negative to positive, so is a relative min for $f$.

The critical point of 6 sees a change of sign in $f'(x)$ from positive to negative, so is a relative max for $f$.

Here the second derivative test is easier:

map(f'', cps)    # plus -> relative min; minus -> relative max
2-element Array{Float64,1}:
  2.0     
 -0.270671
f(x) = (x^2)^(1/3)*(2-x)
plot(f, -4, 4)
-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -20 -10 0 10 20 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 y1 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 -50 0 50 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

At $x=0$ this function does not have a derivative, so $0$ is a critical point – but it is not a zero of $f'(x)$. Will it still be found by fzeros?

cps = fzeros(f', -4, 4)
2-element Array{Float64,1}:
 0.0
 0.8

Yup. We can't use the second derivative test:

map(f'', cps)
2-element Array{Float64,1}:
 NaN      
  -1.79536

That NaN should be expected – the first derivative isn't defined there, so the second can't be either. But we can look at the change of sign in the first derivative and apply the first derivative test:

plot(f', -4, 4)
scatter!(cps, 0*cps)
-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -20 -10 0 10 20 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 y1 y2 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 -40 -20 0 20 40 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

The change of sign at $0$ is obvious if you ignore the spurious vertical line that is graphed. The other change of sign from positive to negative indicates a relative max, as can be seen in the original graph of $f(x)$.