This homework assignment is due on Wednesday 2/15.

In class on 2/8 we discussed the following topics:

- 1. Three key characteristics describing a distribution of numbers: the center, the spread, and the shape.
- 2. To measure center we have the mean or median
- 3. To measure spread with have the IQR or the standard deviation.
- 4. We discussed how boxplots can show the center, spread, and shape of a data set in a manner that allows many comparisons.
- 5. The standard deviation is defined by

$$s = \sqrt{\frac{1}{n-1}\sum(x_i - \bar{x})^2},$$

where Σ is short for add up all the terms of the type $(x_i - \bar{x})2$. (It may take some time to get comfortable with this notation.)

6. Why use the standard deviation? We discussed two reasons why. First, if the data is "bell-shaped," then roughly 68% of the data is with 1 standard deviation of the sample mean, 95% is within 2 standard deviations, and 99.8% is within 3 standard deviations of the mean.

The above is true for a certain shape of data. In general, for any data set at least $(1-1/k^2) \cdot 100\%$ of the data is in the interval $(\bar{x}-ks,\bar{x}+ks)$. This is known as Chebyshev's lemma.

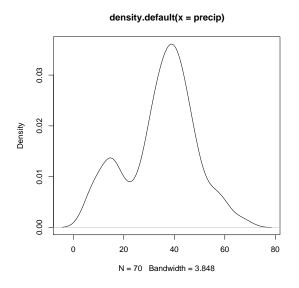
Because of this, we define how big a value is within a data set by its z-score:

$$z=\frac{x_i-\bar{x}}{s}.$$

7. We discussed using the following words to describe shape: unimodal, bimodal, multimodal; symmetric versus skewed; long-tailed or not.

Some problems: Exercise 1. From the diagram, answer the following

> boxplot(count ~ spray, InsectSprays)



The data is on the effectiveness of 6 insect spays. What is plotted is the distribution of bites for different sprays.

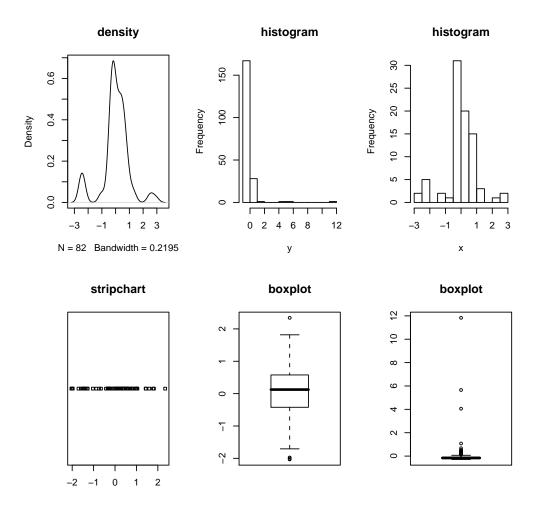
- 1. Which sprays (if any) have a similar center?
- 2. Which sprays (if any) have a similar spread?
- 3. Which sprays (if any) have outliers that are marked?
- 4. Which spray contains the largest measurement? The smallest?

Exercise 2. For the density plot estimate the median and IQR

> plot(density(precip))

Exercise 3. Find the standard deviation of 10, 12, 19, and 15 by filling in the following chart, and then using the formula.

2	x (x-	xbar)	(x-xbar)^2	2
	 10	-4	16	
	12	*	4	
	19	5	*	
	15	*	1	
;	56	*	*	


Exercise 4. For the data set

4,1,3,9,18

- 1. Compute the standard deviation
- 2. For each x_i , compute the z-score.
- 3. What percent of z scores are less than 1.5 in absolute value? Chebyshev's theorem says that atleast 55% are.

Exercise 5. For bell shaped data, the interval $[Q_1, Q_3]$ spans 50% of the data, whereas the interval $[\bar{x} - s, \bar{x} + s]$ spans approximately 68% of the data. If the median and mean are basically the same, which is larger the IQR or s? The IQR or 2s?

Exercise 6. The six graphs show only 3 different data sets. Can you match up the pairs?

- 1. Which distribution(s), if any, are symmetric?
- 2. Which distribution(s), if any, are multimodal?
- 3. Which distribution(s), if any, are unimodal?