MTH335: Numerical Analysis

Professor: John Verzani Office: 1S-220 Telephone: 1 718 982 3620 e-mail: verzani@math.csi.cuny.edu website: http://wiener.math.csi.cuny.edu/verzani/Classes/MTH335/ Meeting Time and places: MW 12:50 - 2:15 Office Hours: W: 2:15-3:30 Required Text: Numerical Analysis, Kincaid and Cheney, Third Edition, AMS

About: MTH335 covers the basics of numerical analysis. The attached syllabus is tentative. It is likely a few sections will be trimmed during the semester.

The book: The book is available at the book store or online. It is a bit advanced in parts, but was significantly cheaper than some alternatives. It should be available for under \$80, where alternatives were well over \$200.

There are some online notes for this class which can be found at https://github.com/csimth335/MTH335.

Grading policy: Your grade will be determined by your performance on the two in-class exams, the final exam, and a homework grade. The three exams are each worth 30% of the grade, the homework grade 10%. Homework will be collected and spot-checked, but not fully graded. There may be quizzes during the semester. Points earned here will count towards your test grades.

Exam Policy: I expect full attendance at all the exams. There will be no make-up exams as a general rule. Be warned, there will be *no* use of cell phones during exams.

Exam Dates: Our tentative dates for the mid-term exams are The mid-term exams will be 10/15 and 11/19. The second exam will be after the drop date.

Academic Honesty: The CUNY academic integrity policies are available from the website http://www.math.csi.cuny.edu/verzani/classes/CUNYapr.pdf. Cheating on exams will not be tolerated. Although I encourage you to work together – if desired – on any assignment for the in-class portion of your grade, this does not mean you can copy another person's work.

	Topic	pgs	Homework
-	Ch. 1: Mathematical Preliminaries	2.20	
1	Taylor's Theorem, Convergence	2-28	1.2: 1,2,4,7,10,30; cp: 1, 2
	Ch. 2: Computer Arithmetic		
2	Floating point	37-54	2.1: 3, 10, 16, 24, 26;
	Julia in a nutshell		2.2: 2,3,5,7,25, cp: 3,4,8
3	Errors, Conditioning	55-72	2.3: 3,4,5 cp: 6
	Ch. 3: Solution of Nonlinear Equations		
4	Root finding. Bisection	74-80	3.1: 2.8.9.22: cp: 1.4
5	Newton's method. Secant method	81-99	3.2: 2.5.8.15: cp 1.2.5.9:
0		01 00	3 3. 1 2 3 7
6	Fixed points and Functional Iteration	100-108	3 4 2 3 5 7 10 12 39
Ū	The points and Functional Perfactor	100 100	0.11 2,0,0,1,10,12, 00
	Ch. 4: Solving Systems of Linear Equations		
7	Matrix algebra	139-149	4.1: 3, 6,11
8	LU and Cholesky factorization	149-162	4.2: 1 bc, 5,7,12,30,31,33,46
9	Pivoting and Algorithms	163 - 185	4.3: 1,3,18,50
10	Norms and analysis of errors	186 - 197	$4.4:\ 1,\ 5,\ 13,\ 40,\ 48$
11	Solution of equations by iterative methods	207-231	4.6: 1, 8, 18, 29; cp: 1
	Ch. 5: Topics in Numeric Linear Algebra		
12	Matrix Eigenvalue Problem: Power method	254-263	5.1: 1, 6, 7, 13; cp: 1, 3
13	Orthogonal Factorizations and Least-Squares Problems	273-287	5.3: 5, 8, 29, 37
13a	QR Algorithm of Francis	298 - 305	5.5: 2,3,4
	Ch. 6. Approximating Functions		
14	Ch. 6: Approximating Functions	200 225	61. 1. h. e. 9 8 19 15 99
14	r orynomial interpolation	300-333	0.1: 1a, 0, c; 2, 8, 12, 15, 22, 24(n-2) only): 6.2: 2, 2
15	Spling	240 277	54(n = 5 only); 0.2; 2, 3
10 16	Bost Approximation: Longt Squares Theory	349-377	0.4: 5, 4, 7, 15, 21 6 8: 1 9 8 14
10	Dest Approximation: Least-Squares Theory	39 2- 404	0.8. 1, 2, 8, 14
	Ch. 7: Numerical Differentiation and Integration		
17	Numerical Differentiation	465 - 477	7.1: 2, 5, 6; c.p. 2, 5
18	Numerical Integration, Interpolation	478 - 491	7.2: 1, 2, 4, 5, 6, 15; c.p.: 1, 3
19	Numerical Integration, Gaussian Quadrature	492-501	7.3: 3, 10a, 22
	Ch. 8: Numerical Solutions of ODEs		
20	Existence and Uniqueness	524 - 529	8.1: 1, 2, 6,7; cd. 1
$\frac{-5}{21}$	Taylor-Series method	530-538	8.2: 1. 2. 4: cp: 1. 37
$\frac{-1}{22}$	Runge-Kutta Methods	539-548	8.3: 1. 2. 5: cp: 1
$\frac{-}{23}$	Multistep Methods	549-557	8.4: 1.4.7: cp 1
$\frac{10}{24}$	Local and Global Errors: Stability	557-564	1. 5
			, -

(Tentative) Syllabus for MTH 335