review for Test 3

UPDATED FOR ERRORS on 12-6

Test 3 will cover sections 4.7 - 5.7

Optimization

As an example, if the pipe goes directly from the rig to the refinery the total cost would be:

$$~ \sqrt{2^2 + 3^2}\cdot 5 + 0 \cdot 2 ~$$

Whereas, if the pipe went directly to shore, then 3 miles along the shore the cost would be

$$~ 2 \cdot 5 + 3\cdot 2 ~$$

Approximating area

$$~ \int (x^3 + 3x^2 + 2x + 1/x) dx, \quad \int (\sin(x) + \cos(x)) dx, \quad \int (e^x + e^{-x}) dx $$~ * Find the indefinite integrals $$~ \int 4(x+5)^6 dx, \quad \int x \sqrt{1 + x^2} dx, \quad \int \frac{\ln(x)}{x} dx ~$$ $$~ \int_1^3 (-15x^2 + 12x) dx, \quad \int_{\pi/6}^{\pi/3} \sec^2(x) dx, \quad \int_{-1}^1 10e^x dx ~$$ $$~ \int_0^1 \frac{x}{10}e^{-10x^2} dx, \quad \int_0^1 5x \sqrt{1 - x^2} dx, \quad \int_0^\pi e^{\sin(x)} \cos(x) dx ~$$

On what intervals is $A(x)$ increasing? What are the critical values of $A(x)$? Does the first derivative test say that $x=2$ is a relative maximum?