Sample questions for test 2

There may be other types of questions, but being able to do these should mean you will do well on this test.

Limits

$$~ \lim_{x \rightarrow 0} \frac{\sqrt{x + 25} - 5}{x} ~$$$$~ \lim_{x \rightarrow 0} \frac{|x|}{x} ~$$$$~ \lim_{x \rightarrow 0} \frac{(3+x)^{-1} - (3-x)^{-1}}{x} ~$$$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$$$~ \lim_{x \rightarrow 0} \frac{\sqrt{x + 25} - 5}{x} ~$$$$~ \lim_{x \rightarrow 0} \frac{|x|}{x} ~$$$$~ \lim_{x \rightarrow 0} \frac{(3+x)^{-1} - (3-x)^{-1}}{x} ~$$$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$$$~ \lim_{x \rightarrow 0}\frac{\sqrt{1+x} - \sqrt{1-x}}{x}. ~$$$$~ \lim_{x \rightarrow 4} \frac{x^{3/2} - 8}{x-4} ~$$

(Use: f(x) = (x^(3//2) - 8) / (x - 4).)

$$~ \lim_{x \rightarrow 0} \frac{|x|}{x}. ~$$$$~ \lim_{x \rightarrow 0+} \log(\frac{1}{|x|})^{-1/32} ~$$

Derivatives

We assume you have run the following code:

$$~ y(t) = -16t^2 + 25t + 5, \quad t \geq 0 ~$$

Find the rate of change of height at time $t=1$. Find the rate of change of height at the instant the arrow strikes the grount.

First and second derivatives