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Some key things:
For points (xg,y0),- -, (Xs,yn) Where y; = f(x;), there is a unique polynomial of degree n or
less with p(x;) = y;. This polynomial may be written as

p(x) = flxo] + f[x0, x1](x —x0) + f[x0, %1, %2] (x —x0) (x —x1) 4+ flx0, %1, - - ., X (X —X0) -+ - (x—Xp—1), OF

n

p<x>=gf<xi> I =
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We had two formulas to approximate the derivative at a point:

fOth) - fx)
h )
central difference: f’(x) ~ flrt h)z—hf(x —h) .

For both, there is a balance needed between truncation error and floating point error.

We discussed three types of integration using interpolating polynomials based on equally
spaced points: Riemann, trapezoid, Simpsons. Applied to a simple interval these give the follow-
ing approximations to fff(x)dx: fla)(b—a), (1/2)(b—a)(f(a)+ f(b)),and (1/6)(b—a)(f(a)+
4f((a+b)/2)+ f(b)). The error when applying these formulas in a composite manner are O(h),
O(h?), and O(h*) respectively.

We discussed quadrature formulas, such as Gauss quadrature where | ll f(x)dxis approximated
by a sum Y f(x;)A; where x; are nodes and A; are weights. By choosing nodes appropriately we
can ensure that using n + 1 points yields a method that exactly integrates any polynomial of degree
2n+1.

For initial-value problems we discussed some theorems that guarantee convergence: if both f
and df /dx are continuous in R, then there is a unique solution for |t —ty| < min(o,/M); and If f
is Lipshitz then the intial value problem will have a unique solution in some interval.

We discussed various schemes for approximating solutionsn to initial value problems. In par-
ticular:

forward difference: f'(x) ~

* Euler’s method: x,,+1 = x,, + Af (ty, xp)
» Backwards Euler: x,,+1 = x, + hf (tp1,%n+1)
* Runge Kautte including:

- Heun: x,11 =x,+(1/2)F1+(1/2)F,, Fi=hf(ty,xn), F=hf(t,+h/2,x,+F/2)

— RK45: x4 =xn+(1/6)(F1+4F2+4F3 —I—F4), where F3 th(ln+h/2,xn+F2/2), Fy=

* Multistep including:
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— Second order Adams-Bashworth: x,,+1 = x, +4[(3/2) f, — (1/2) fu—1]
- Second order Adams-Moulton: x,1 = x, +h[(5/12) fu1+ (2/3) f — (1/12) fu—1]

For multistep models we discussed that the algorithms are convergent if and only if they are
stable and consistent. The latter two conditions can be checked by related polynomials.

For multistep models with f, < A < e we discussed that if the local truncation error was
O(h™*1) the global truncation error was O(h™).



