
1 Questions to be handed in on Newton’s Method:

Read about this material here: Newton’s Method.
Begin by loading our package for plotting and the Roots package

using Gadfly

using Roots

1.0.1 Quick background Read the notes for more detail

Symbolic math is pretty nice. For so many problems it can easily do what is tedious work. However,
for some questions, only numeric solutions are possible. For example, there is no general formula to
solve a fifth order polynomial, the way there is a quadratic formula. Even an innocuous polynomial
like f(x) = x5 − x− 1 has no easy algebraic solution:

using SymPy

x = Sym("x")

solve(x^5 - x - 1)

We see that SymPy basically punts on this question.
Numeric solutions are available. As this is a polynomial, we could do:

using Polynomial

x = Poly([1, 0]) # 1x + 0

roots(x^5 - x - 1)

We see 5 roots – as expected from a fifth degree polynomial – with one real root (the one
with 0.0im) that is approximately 1.1673. Finding such a value usually requires some root-finding
algorithm.

Newton’s method is a root-finding algorithm like the bisection method discussed earlier. As an
algorithm it starts with some guess for a root to an equation f(x) = 0. If this guess is called x0,
then the algorithm gives a new (and improved) guess x1. It is expected that x1 is a better guess,
but may not be the best that can be. The algorithm is then repeated again to produce x2. This
is done until some guess xn is as close as we can get or the algorithm fails for some reason. The
approximate root is taken to be xn.

What is the algorithm? It is simple. If we start with some xi, then xi+1 is given by the intersec-
tion point of the x-axis of the tangent line of f(x) at xi. See a figure [here](http://mth229.github.io/newton.html# basic idea ].
Mathematically then we can equate our two means to compute the slope of a tangent line:

f ′(xi) =
f(xi)− 0

xi − xi+1

Or, solving for xi+1:

xi+1 = xi − f(xi)/f
′(xi)

Let’s see this algorithm for f(x) = x^32x5, a function that Newton considered. He was looking
for a solution near 2, so let’s start there:
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x = 2

f(x) = x^3 - 2x -5

fp(x) = 3x^2 - 2 # done by hand

We don’t need to track the index (x0, x1, . . . ) as when we write the following expression, the
next value is just assigned to x using the current value of x when computed:

x = x - f(x) / fp(x)

x, f(x) # display both the new guess, x, and the value f(x)

The value of 2.1 is a better guess, but not near the actual answer. We simply repeat to (hopefully)
get a better guess:

x = x - f(x) / fp(x)

x, f(x)

Here are a few repeats:

x = x - f(x) / fp(x)

x, f(x)

x = x - f(x) / fp(x)

x, f(x)

The value of f(x) is now basically 0, and any further updates to x do not change its value. We
see that the algorithm has converged to an answer, x, and the fact that it is a zero is confirmed by
the value of f(x).

Repeating steps in IJulia can be a bit of a chore, so here we define a macro to repeat some
expression 5 times and then show how to use it. (A macro does not evaluate its expression imme-
diately, unlike functions.)

macro take5(body) quote [$(esc(body)) for _ in 1:5] end end # take5 macro

Macros are prefaced with a @ in their name and are called without parentheses:

@take5 x = x - f(x) / fp(x)

We now show how we can get the above in a more efficient manner:

f(x) = x^3 - 2x -5

x = 2 # initial guess

fp(x) = 3x^2 - 2

@take5 x = x - f(x)/fp(x)

(x, f(x)) # has converged, as f(x) is basically 0
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1.0.2 Questions

• Apply Newton’s Method to the function f(x) = sin(x) with an initial guess 3. (This was
historically used to compute many digits of π efficiently.) What is the answer after 5 iterations?
What is the value of sin at the answer?

• Use Newton’s method to find a zero for the function f(x) = x5 − x − 1. Start at x = 1.6.
What is the approximate root after 5 iterations? What is the value of f(x) for your answer?
If you do one or two more iterations, will your guess be better?

• Use Newton’s method to find a zero of the function f(x) = cos(x) − x. Make a graph to
identify an initial guess.

1.0.3 Using D for the derivative

If the function f(x) allows it, the D operator from the Roots package can simplify the algorithm,
as the derivative need not be computed by hand. In this case, the algorithm in julia becomes x

= x - f(x)/D(f)(x).

• Use Newton’s method to find an intersection point of f(x) = e−x
2

and g(x) = x. (Look at
h(x) = f(x)− g(x) = 0.) Start with a guess of 0.

• Use Newton’s method to find both positive intersection point of f(x) = ex and g(x) = 2x2.
Make a graph to identify good initial guesses.

1.0.4 using newton and fzero from the Roots package

The newton function in the Roots package will compute newton’s method. For example:

f(x) = sin(x)

fp(x) = cos(X)

x = 3

newton(f, fp, x)

However, the fzero function – that we have seen before – will use a derivative-free algorithm,
similar to Newton’s method to find a zero. So, the above could be achieved with:

fzero(sin, 3)
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(That is right, fzero can be used two different ways – at least. Above it is called with an initial
guess. Previously, we called it with a bracketing interval, as in fzero(sin, [3,4]). If you specify
a bracketing interval, fzero will use an algorithm guaranteed to converge. If you just specify an
initial guess, the convergence may not happen.)

• find a zero of f(x) = x · (2 + ln(x)) starting at 1. What is your answer? How small is the
function for this value?

• Use fzero to find all zeros of the function f(x) = 2 sin(x) − cos(2x) in [0, 2π]. (Graph first
to see approximate answers.)

• The default algorithm for fzero is to use Steffensen’s method, which replaces f ′(x) with an
approximation: (f(x + f(x)) − f(x))/f(x). It looks complicated, but is just the secant line
approximation with a small h given by f(x), so the initial guess is quite important.

For the function

f(x) = 5
sin(x)

cos2(x)
− 7

cos(x)

sin2(x)

Compare the approximate derivative above with (h = f(x)) to that given by D(f)(x) when
x=pi/4. Are they close?

• The above question came from trying to find when the derivative of f(x) = 5/ cos(x)+7/ sin(x)
is 0 in the interval (0, π/2). The basic fzero call for D(f) fails if x=pi/4. (Try it: fzero(D(f),
pi/4).) One can try closer guesses, or a different algorithm. The fzero function has an
argument order which can be either 2, 5, 8 or 16. Try it with order=8 and see if it converges.
If it does, what is the root? (An order 8 algorithm should converge faster mathematically
than the default order 2 algorithm, but may not once implemented on the computer.)

1.0.5 When Newton’s method fails

Newton’s method can fail due to various cases:

1) the initial guess is not close to the zero

2) the derivative, |f ′(x)| is too small

3) the second derivative |f ′′(x)| is too big
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• Let f(x) = x5 − x− 1. Try Newton’s method with an initial guess of x0 = 0. Why does this
fail? (You can look graphically. Otherwise, you could look at the output of newton with this
extra argument: newton(f, fp, x0, verbose=true).

• Let f(x) = abs(x)^(1/3). Starting at x=1, Newton’s method will fail to converge. What
happens? Are any of the above 3 reason’s to blame?

1.0.6 Quadratic convergence

When Newton’s method converges to a simple zero it is said to have quadratic convergence. A
simple zero is one with multiplicity 1 and quadratic convergence says basically that the error at
the i+ 1st step is like the error for ith step squared. In particular, if the error is like 10−3 on one
step, it will be like 10−6, then 10−12 then 10−24 on subsequent steps. (Which is typically beyond
the limit of a floating point approximation.) This is why one can usually take just 5 steps to get
to an answer.

Not so for multiple roots.

• For the function f(x) = (8x*exp(-x^2) -2x - 3)^8, starting with x=-2.0 Newton’s method
will converge, but it will take many steps to get to an answer that has f(x) around 10−16.
How many? Roughly how many iterations do you need? (A single call of @take5 x =

x-f(x)/D(f)(x) gives an answer with f(x) = 0.00028 only.)

• Repeat the above with f(x) = 8x*exp(-x^2) -2x - 3 and again, starting with x=-2.0.
Roughly how many iterations are needed now?
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