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and Permutation Tests

Telephone repair times are strongly skewed to the right. This chapter describes
alternative inference methods that do not rely on the Normal distribution. See
Example 16.1 for a comparison of telephone repair times.

16.1 The Bootstrap Idea

16.2 First Steps in Using
the Bootstrap

16.3 How Accurate Is a Bootstrap
Distribution?

16.4 Bootstrap Confidence
Intervals

16.5 Significance Testing Using
Permutation Tests

Introduction
The continuing revolution in computing is having a
dramatic influence on statistics. The exploratory analy-
sis of data is becoming easier as more graphs and calcu-
lations are automated. The statistical study of very
large and very complex data sets is now feasible.
Another impact of this fast and cheap computing is
less obvious: new methods that apply previously un-
thinkable amounts of computation to produce confi-
dence intervals and tests of significance in settings that
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comments on an earlier version.
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don’t meet the conditions for safe application of the usual methods of
inference.

Consider the commonly used t procedures for inference about means (Chap-
ter 7) and relationships between quantitative variables (Chapter 10). All of these
methods rest on the use of Normal distributions for data. While no data are
exactly Normal, the t procedures are useful in practice because they are ro-
bust. Nonetheless, we cannot use t confidence intervals and tests if the dataLOOK BACK

robustness, page 432

F test for equality of
spread, page 474

are strongly skewed, unless our samples are quite large. Inference about spread
based on Normal distributions is not robust and therefore of little use in prac-
tice. Finally, what should we do if we are interested in, say, a ratio of means,
such as the ratio of average men’s salary to average women’s salary? There is
no simple traditional inference method for this setting.

The methods of this chapter—bootstrap confidence intervals and permuta-
tion tests—apply computing power to relax some of the conditions needed for
traditional inference and to do inference in new settings. The big ideas of sta-
tistical inference remain the same. The fundamental reasoning is still based on
asking, “What would happen if we applied this method many times?” Answers
to this question are still given by confidence levels and P-values based on the
sampling distributions of statistics.

The most important requirement for trustworthy conclusions about a pop-
ulation is still that our data can be regarded as random samples from the
population—not even the computer can rescue voluntary response samples or
confounded experiments. But the new methods set us free from the need forLOOK BACK

confounded, page 177 Normal data or large samples. They also set us free from formulas. They work
the same way (without formulas) for many different statistics in many differ-
ent settings. They can, with sufficient computing power, give results that are
more accurate than those from traditional methods. What is more, bootstrap
intervals and permutation tests are conceptually simpler than confidence in-
tervals and tests based on Normal distributions because they appeal directly
to the basis of all inference: the sampling distribution that shows what would
happen if we took very many samples under the same conditions.

The new methods do have limitations, some of which we will illustrate. But
their effectiveness and range of use are so great that they are rapidly becoming
the preferred way to do statistical inference. This is already true in high-stakes
situations such as legal cases and clinical trials.

Software
Bootstrapping and permutation tests are feasible in practice only with software
that automates the heavy computation that these methods require. If you are
sufficiently expert, you can program at least the basic methods yourself. It is
easier to use software that offers bootstrap intervals and permutation tests pre-
programmed, just as most software offers the various t intervals and tests. You
can expect the new methods to become more common in standard statistical
software.

This chapter primarily uses S-PLUS,1 the software choice of many statis-
ticians doing research on resampling methods. A free version of S-PLUS is
available to students, and a free evaluation copy is available to instructors.
You will need two free libraries that supplement S-PLUS: the S+Resample
library, which provides menu-driven access to the procedures described in
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this chapter, and the IPSdata library, which contains all the data sets for this
text. You can find links for downloading this software on the text Web site,
www.whfreeman.com/ipsresample.

You will find that using S-PLUS is straightforward, especially if you have ex-
perience with menu-based statistical software. After launching S-PLUS, load
the IPSdata library. This automatically loads the S+Resample library as well.
The IPSdata menu includes a guide with brief instructions for each procedure
in this chapter. Look at this guide each time you meet something new. There is
also a detailed manual for resampling under the Help menu. The resampling
methods you need are all in the Resampling submenu in the Statistics menu
in S-PLUS. Just choose the entry in that menu that describes your setting.
S-PLUS is highly capable statistical software that can be used for everything in
this text. If you use S-PLUS for all your work, you may want to obtain a more
detailed book on S-PLUS.

Other software packages that currently offer preprogrammed bootstrap and
permutation methods are SPSS and SAS. For SPSS, there is an auxiliary boot-
strap module that contains all but a few of the methods described in this chap-
ter. Included with the module are all the data sets in this chapter as well as the
syntax needed to generate most of the plots. For SAS, the SURVEYSELECT
procedure can be used to do the necessary resampling. The bootstrap macro
contains most of the confidence interval methods offered by S-PLUS. You can
again find links for downloading these modules or macros on the text Web site,
www.whfreeman.com/ipsresample.

16.1 The Bootstrap Idea
Here is a situation in which the new computer-intensive methods are now being
applied. We will use this example to introduce these methods.

•
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States, many different companies offer local telephone service. It isn’t in the
public interest to have all these companies digging up streets to bury cables,
so the primary local telephone company in each region must (for a fee) share
its lines with its competitors. The legal term for the primary company is In-
cumbent Local Exchange Carrier, ILEC. The competitors are called Compet-
ing Local Exchange Carriers, or CLECs.

Verizon is the ILEC for a large area in the eastern United States. As such,
it must provide repair service for the customers of the CLECs in this region.
Does Verizon do repairs for CLEC customers as quickly (on the average) as
for its own customers? If not, it is subject to fines. The local Public Utilities
Commission requires the use of tests of significance to compare repair times
for the two groups of customers.

Repair times are far from Normal. Figure 16.1 shows the distribution of a
random sample of 1664 repair times for Verizon’s own customers.2 The dis-
tribution has a very long right tail. The median is 3.59 hours, but the mean
is 8.41 hours and the longest repair time is 191.6 hours. We hesitate to use t
procedures on such data, especially as the sample sizes for CLEC customers
are much smaller than for Verizon’s own customers.
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FIGURE 16.1 (a) The
distribution of 1664 repair times
for Verizon customers. (b)
Normal quantile plot of the
repair times. The distribution is
strongly right-skewed.

The big idea: resampling and the bootstrap distribution
Statistical inference is based on the sampling distributions of sample statistics.LOOK BACK

sampling distribution,
page 215

A sampling distribution is based on many random samples from the popula-
tion. The bootstrap is a way of finding the sampling distribution, at least ap-
proximately, from just one sample. Here is the procedure:

Step 1: Resampling. In Example 16.1, we have just one random sample. In
place of many samples from the population, create many resamples by repeat-resamples
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edly sampling with replacement from this one random sample. Each resample
is the same size as the original random sample.

Sampling with replacement means that after we randomly draw an ob-sampling with replacement
servation from the original sample we put it back before drawing the next
observation. Think of drawing a number from a hat, then putting it back be-
fore drawing again. As a result, any number can be drawn more than once. If
we sampled without replacement, we’d get the same set of numbers we started
with, though in a different order. Figure 16.2 illustrates three resamples from
a sample of six observations. In practice, we draw hundreds or thousands of
resamples, not just three.

1.57 0.22 19.67 0.00 0.22 3.12
mean = 4.13

0.00 2.20 2.20 2.20 19.67 1.57
mean = 4.64

3.12 0.00 1.57 19.67 0.22 2.20
  mean = 4.46

0.22 3.12 1.57 3.12 2.20 0.22
mean = 1.74

FIGURE 16.2 The resampling idea. The top box is a sample of size n = 6 from the Verizon
data. The three lower boxes are three resamples from this original sample. Some values
from the original are repeated in the resamples because each resample is formed by
sampling with replacement. We calculate the statistic of interest—the sample mean in this
example—for the original sample and each resample.

Step 2: Bootstrap distribution. The sampling distribution of a statistic
collects the values of the statistic from the many samples of the population.
The bootstrap distribution of a statistic collects its values from the manybootstrap distribution
resamples. The bootstrap distribution gives information about the sampling
distribution.

THE BOOTSTRAP IDEA

The original sample represents the population from which it was drawn.
Thus, resamples from this original sample represent what we would get
if we took many samples from the population. The bootstrap distribution
of a statistic, based on the resamples, represents the sampling distribu-
tion of the statistic.
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we want to estimate the population mean repair time μ, so the statistic is the
sample mean x. For our one random sample of 1664 repair times, x = 8.41
hours. When we resample, we get different values of x, just as we would if we
took new samples from the population of all repair times.

Figure 16.3 displays the bootstrap distribution of the means of 1000 re-
samples from the Verizon repair time data, using first a histogram and a den-
sity curve and then a Normal quantile plot. The solid line in the histogram
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FIGURE 16.3 (a) The bootstrap distribution for 1000 resample means from the sample of
Verizon repair times. The solid line marks the original sample mean, and the dashed line
marks the average of the bootstrap means. (b) The Normal quantile plot confirms that the
bootstrap distribution is nearly Normal in shape.

•
marks the mean 8.41 of the original sample, and the dashed line marks the
mean of the bootstrap resample means.

According to the bootstrap idea, the bootstrap distribution represents the
sampling distribution. Let’s compare the bootstrap distribution with what we
know about the sampling distribution.

Shape: We see that the bootstrap distribution is nearly Normal. The central
limit theorem says that the sampling distribution of the sample mean x is ap-LOOK BACK

central limit theorem,
page 339

proximately Normal if n is large. So the bootstrap distribution shape is close
to the shape we expect the sampling distribution to have.

Center: The bootstrap distribution is centered close to the mean of the orig-
inal sample. That is, the mean of the bootstrap distribution has little bias as an
estimator of the mean of the original sample. We know that the sampling dis-
tribution of x is centered at the population mean μ, that is, that x is an unbiased
estimate of μ. So the resampling distribution behaves (starting from the orig-LOOK BACK

mean and standard
deviation of x,
page 338

inal sample) as we expect the sampling distribution to behave (starting from
the population).

Spread: The histogram and density curve in Figure 16.3 picture the varia-
tion among the resample means. We can get a numerical measure by calculat-
ing their standard deviation. Because this is the standard deviation of the 1000
values of x that make up the bootstrap distribution, we call it the bootstrap
standard error of x. The numerical value is 0.367. In fact, we know that thebootstrap standard error
standard deviation of x is σ/

√
n, where σ is the standard deviation of individ-

ual observations in the population. Our usual estimate of this quantity is the
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standard error of x, s/
√

n, where s is the standard deviation of our one random
sample. For these data, s = 14.69 and

s√
n

= 14.69√
1664

= 0.360

The bootstrap standard error 0.367 agrees closely with the theory-based esti-
mate 0.360.

In discussing Example 16.2, we took advantage of the fact that statistical
theory tells us a great deal about the sampling distribution of the sample mean
x. We found that the bootstrap distribution created by resampling matches
the properties of this sampling distribution. The heavy computation needed
to produce the bootstrap distribution replaces the heavy theory (central limit
theorem, mean and standard deviation of x) that tells us about the sampling
distribution. The great advantage of the resampling idea is that it often works
even when theory fails. Of course, theory also has its advantages: we know ex-
actly when it works. We don’t know exactly when resampling works, so that
“When can I safely bootstrap?” is a somewhat subtle issue.

Figure 16.4 illustrates the bootstrap idea by comparing three distributions.
Figure 16.4(a) shows the idea of the sampling distribution of the sample mean
x: take many random samples from the population, calculate the mean x for
each sample, and collect these x-values into a distribution.

Figure 16.4(b) shows how traditional inference works: statistical theory tells
us that if the population has a Normal distribution, then the sampling distri-
bution of x is also Normal. If the population is not Normal but our sample is
large, we can use the central limit theorem. If μ and σ are the mean and stan-LOOK BACK

central limit theorem,
page 339

dard deviation of the population, the sampling distribution of x has mean μ and
standard deviation σ/

√
n. When it is available, theory is wonderful: we know

the sampling distribution without the impractical task of actually taking many
samples from the population.

Figure 16.4(c) shows the bootstrap idea: we avoid the task of taking many
samples from the population by instead taking many resamples from a single
sample. The values of x from these resamples form the bootstrap distribution.
We use the bootstrap distribution rather than theory to learn about the sam-
pling distribution.

USE YOUR KNOWLEDGE
16.1 A small bootstrap example. To illustrate the bootstrap procedure,

let’s bootstrap a small random subset of the Verizon data:

26.47 0.00 5.32 17.30 29.78 3.67

(a) Sample with replacement from this initial SRS by rolling a die.
Rolling a 1 means select the first member of the SRS (26.47), a
2 means select the second member (0.00), and so on. (You can
also use Table B of random digits, responding only to digits 1 to
6.) Create 20 resamples of size n = 6.

(b) Calculate the sample mean for each of the resamples.
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FIGURE 16.4 (a) The idea of the sampling distribution of the sample mean x: take very
many samples, collect the x-values from each, and look at the distribution of these values.
(b) The theory shortcut: if we know that the population values follow a Normal
distribution, theory tells us that the sampling distribution of x is also Normal. (c) The
bootstrap idea: when theory fails and we can afford only one sample, that sample stands
in for the population, and the distribution of x in many resamples stands in for the
sampling distribution.

16-8



16.1 The Bootstrap Idea
•

16-9

(c) Make a stemplot of the means of the 20 resamples. This is the
bootstrap distribution.

(d) Calculate the standard deviation of the bootstrap distribution.

16.2 Standard deviation versus standard error. Explain the difference
between the standard deviation of a sample and the standard error
of a statistic such as the sample mean.

Thinking about the bootstrap idea
It might appear that resampling creates new data out of nothing. This seems
suspicious. Even the name “bootstrap” comes from the impossible image of
“pulling yourself up by your own bootstraps.”3 But the resampled observa-
tions are not used as if they were new data. The bootstrap distribution of the
resample means is used only to estimate how the sample mean of one actual
sample of size 1664 would vary because of random sampling.

Using the same data for two purposes—to estimate a parameter and also to
estimate the variability of the estimate—is perfectly legitimate. We do exactly
this when we calculate x to estimate μ and then calculate s/

√
n from the same

data to estimate the variability of x.
What is new? First of all, we don’t rely on the formula s/

√
n to estimate the

standard deviation of x. Instead, we use the ordinary standard deviation of the
many x-values from our many resamples.4 Suppose that we take B resamples.
Call the means of these resamples x∗ to distinguish them from the mean x of
the original sample. Find the mean and standard deviation of the x∗’s in the
usual way. To make clear that these are the mean and standard deviation of the
means of the B resamples rather than the mean x and standard deviation s of
the original sample, we use a distinct notation:

meanboot = 1
B

∑
x∗

SEboot =
√

1
B − 1

∑ (
x∗ − meanboot

)2

These formulas go all the way back to Chapter 1. Once we have the values x∗,LOOK BACK
describing
distributions with
numbers, page 30

we just ask our software for their mean and standard deviation. We will often
apply the bootstrap to statistics other than the sample mean. Here is the general
definition.

BOOTSTRAP STANDARD ERROR

The bootstrap standard error SEboot of a statistic is the standard devi-
ation of the bootstrap distribution of that statistic.

Another thing that is new is that we don’t appeal to the central limit theo-
rem or other theory to tell us that a sampling distribution is roughly Normal.
We look at the bootstrap distribution to see if it is roughly Normal (or not). In
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most cases, the bootstrap distribution has approximately the same shape and
spread as the sampling distribution, but it is centered at the original sample
statistic value rather than the parameter value. The bootstrap allows us to cal-
culate standard errors for statistics for which we don’t have formulas and to
check Normality for statistics that theory doesn’t easily handle.

To apply the bootstrap idea, we must start with a statistic that estimates the
parameter we are interested in. We come up with a suitable statistic by appeal-
ing to another principle that we have often applied without thinking about it.

THE PLUG-IN PRINCIPLE

To estimate a parameter, a quantity that describes the population, use
the statistic that is the corresponding quantity for the sample.

The plug-in principle tells us to estimate a population mean μ by the sample
mean x and a population standard deviation σ by the sample standard devia-
tion s. Estimate a population median by the sample median and a population
regression line by the least-squares line calculated from a sample. The boot-
strap idea itself is a form of the plug-in principle: substitute the data for the
population, then draw samples (resamples) to mimic the process of building a
sampling distribution.

Using software
Software is essential for bootstrapping in practice. Here is an outline of the pro-
gram you would write if your software can choose random samples from a set
of data but does not have bootstrap functions:

Repeat 1000 times {
Draw a resample with replacement from the data.
Calculate the resample mean.
Save the resample mean into a variable.

}
Make a histogram and Normal quantile plot of the 1000 means.
Calculate the standard deviation of the 1000 means.
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1664 Verizon repair times are saved as a variable, we can use menus to re-
sample from the data, calculate the means of the resamples, and request
both graphs and printed output. We can also ask that the bootstrap results
be saved for later access.

The graphs in Figure 16.3 are part of the S-PLUS output. Figure 16.5
shows some of the text output. The Observed entry gives the mean x = 8.412
of the original sample. Mean is the mean of the resample means, meanboot.
Bias is the difference between the Mean and Observed values. The bootstrap
standard error is displayed under SE. The Percentiles are percentiles of the
bootstrap distribution, that is, of the 1000 resample means pictured in Figure
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FIGURE 16.5 S-PLUS output for
the Verizon data bootstrap, for
Example 16.3.

•
16.3. All of these values except Observed will differ a bit if you repeat 1000
resamples, because resamples are drawn at random.

SECTION 16.1 Summary

To bootstrap a statistic such as the sample mean, draw hundreds of resamples
with replacement from a single original sample, calculate the statistic for each
resample, and inspect the bootstrap distribution of the resampled statistics.

A bootstrap distribution approximates the sampling distribution of the statis-
tic. This is an example of the plug-in principle: use a quantity based on the
sample to approximate a similar quantity from the population.

A bootstrap distribution usually has approximately the same shape and spread
as the sampling distribution. It is centered at the statistic (from the original
sample) when the sampling distribution is centered at the parameter (of the
population).

Use graphs and numerical summaries to determine whether the bootstrap dis-
tribution is approximately Normal and centered at the original statistic, and to
get an idea of its spread. The bootstrap standard error is the standard devia-
tion of the bootstrap distribution.

The bootstrap does not replace or add to the original data. We use the bootstrap
distribution as a way to estimate the variation in a statistic based on the original
data.

SECTION 16.1 Exercises
For Exercises 16.1 and 16.2, see pages 16-7 and 16-9.

16.3 What’s wrong? Explain what is wrong with each
of the following statements.

(a) The bootstrap distribution is created by
resampling with replacement from the population.

(b) The bootstrap distribution is created by
resampling without replacement from the original
sample.

(c) When generating the resamples, it is best to use
a sample size larger than the size of the original
sample.

(d) The bootstrap distribution will be similar to
the sampling distribution in shape, center, and
spread.

Inspecting the bootstrap distribution of a statistic helps us
judge whether the sampling distribution of the statistic is
close to Normal. Bootstrap the sample mean x for each of
the data sets in Exercises 16.4 to 16.8 using 1000 resamples.
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Construct a histogram and Normal quantile plot to assess
Normality of the bootstrap distribution. On the basis of
your work, do you expect the sampling distribution of x to
be close to Normal? Save your bootstrap results for later
analysis.

16.4 Bootstrap distribution of average IQ score. The
distribution of the 60 IQ test scores in Table 1.3
(page 13) is roughly Normal (see Figure 1.7) and
the sample size is large enough that we expect a
Normal sampling distribution.

16.5 Bootstrap distribution of average CO2

emissions. The distribution of carbon dioxide
(CO2) emissions in Table 1.6 (page 26) is strongly
skewed to the right. The United States and several
other countries appear to be high outliers.

16.6 Bootstrap distribution of average listening
time. The numbers of hours per month listening to
full-track music on cell phones in a random sample
of 8 U.S. 3G subscribers (Example 7.1, page 421)
are

5 6 0 4 11 9 2 3

The distribution has no outliers, but we cannot
assess Normality from so small a sample.

16.7 Bootstrap distribution of average C-reactive
protein. The measurements of C-reactive protein
in 40 children (Exercise 7.26, page 442) are
very strongly skewed. We were hesitant to use t
procedures for inference from these data.

16.8 Bootstrap distribution of average audio file
length. The distribution of the lengths (in seconds)
of audio files found on an iPod (Table 7.3, page
436) is skewed. We previously transformed the
data prior to using t procedures.

16.9 Standard error versus the bootstrap standard
error. We have two ways to estimate the standard
deviation of a sample mean x: use the formula
s/

√
n for the standard error, or use the bootstrap

standard error.

(a) Find the sample standard deviation s for the
60 IQ test scores in Exercise 16.4 and use it to find
the standard error s/

√
n of the sample mean. How

closely does your result agree with the bootstrap
standard error from your resampling in Exercise
16.4?

(b) Find the sample standard deviation s for the
CO2 emissions in Exercise 16.5 and use it to find
the standard error s/

√
n of the sample mean. How

closely does your result agree with the bootstrap
standard error from your resampling in Exercise
16.5?

(c) Find the sample standard deviation s for the 8
listening times in Exercise 16.6 and use it to find
the standard error s/

√
n of the sample mean. How

closely does your result agree with the bootstrap
standard error from your resampling in Exercise
16.6?

16.10 Survival times in a medical study. The “survival
times” of machines before a breakdown and
of cancer patients after treatment are typically
strongly right-skewed. Table 1.8 (page 29) gives
the survival times (in days) of 72 guinea pigs in a
medical trial.5

(a) Make a histogram of the survival times. The
distribution is strongly skewed.

(b) The central limit theorem says that the
sampling distribution of the sample mean x
becomes Normal as the sample size increases.
Is the sampling distribution roughly Normal for
n = 72? To find out, bootstrap these data using 1000
resamples and inspect the bootstrap distribution
of the mean. The central part of the distribution is
close to Normal. In what way do the tails depart
from Normality?

16.11 More on survival times in a medical study. Here
is an SRS of 20 of the guinea pig survival times
from Exercise 16.10:

92 123 88 598 100 114 89 522 58 191
137 100 403 144 184 102 83 126 53 79

We expect the sampling distribution of x to be
less close to Normal for samples of size 20 than
for samples of size 72 from a skewed distribution.
These data include some extreme high outliers.

(a) Create and inspect the bootstrap distribution
of the sample mean for these data using 1000
resamples. Is it less close to Normal than your
distribution from the previous exercise?

(b) Compare the bootstrap standard errors for
your two runs. What accounts for the larger
standard error for the smaller sample?
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16.2 First Steps in Using the Bootstrap
To introduce the key ideas of resampling and bootstrap distributions, we stud-
ied an example in which we knew quite a bit about the actual sampling dis-
tribution. We saw that the bootstrap distribution agrees with the sampling
distribution in shape and spread. The center of the bootstrap distribution is not
the same as the center of the sampling distribution. The sampling distribution
of a statistic used to estimate a parameter is centered at the actual value of the
parameter in the population, plus any bias. The bootstrap distribution is cen-
tered at the value of the statistic for the original sample, plus any bias. The keyLOOK BACK

bias, page 217 fact is that the two biases are similar even though the two centers may not be.
The bootstrap method is most useful in settings where we don’t know the

sampling distribution of the statistic. The principles are:

• Shape: Because the shape of the bootstrap distribution approximates the
shape of the sampling distribution, we can use the bootstrap distribution to
check Normality of the sampling distribution.

• Center: A statistic is biased as an estimate of the parameter if its sampling
distribution is not centered at the true value of the parameter. We can check
bias by seeing whether the bootstrap distribution of the statistic is centered
at the value of the statistic for the original sample.

More precisely, the bias of a statistic is the difference between the mean
of its sampling distribution and the true value of the parameter. The boot-
strap estimate of bias is the difference between the mean of the bootstrapbootstrap estimate of bias
distribution and the value of the statistic in the original sample.

• Spread: The bootstrap standard error of a statistic is the standard deviation
of its bootstrap distribution. The bootstrap standard error estimates the stan-
dard deviation of the sampling distribution of the statistic.

Bootstrap t confidence intervals
If the bootstrap distribution of a statistic shows a Normal shape and small bias,
we can get a confidence interval for the parameter by using the bootstrap stan-
dard error and the familiar t distribution. An example will show how this works.

•
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E 16.4 Selling prices of residential real estate. We are interested in the
selling prices of residential real estate in Seattle, Washington. Table 16.1 dis-
plays the selling prices of a random sample of 50 pieces of real estate sold in
Seattle during 2002, as recorded by the county assessor.6 Unfortunately, the
data do not distinguish residential property from commercial property. Most
sales are residential, but a few large commercial sales in a sample can greatly
increase the sample mean selling price.

Figure 16.6 shows the distribution of the sample prices. The distribution is
far from Normal, with a few high outliers that may be commercial sales. The
sample is small, and the distribution is highly skewed and “contaminated” by
an unknown number of commercial sales. How can we estimate the center of
the distribution despite these difficulties?
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TABLE 16.1

Selling prices for Seattle real estate, 2002 ($1000s)

142 175 197.5 149.4 705 232 50 146.5 155 1850
132.5 215 116.7 244.9 290 200 260 449.9 66.407 164.95
362 307 266 166 375 244.95 210.95 265 296 335
335 1370 256 148.5 987.5 324.5 215.5 684.5 270 330
222 179.8 257 252.95 149.95 225 217 570 507 190
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FIGURE 16.6 Graphical displays of the 50 selling prices in Table 16.1. The distribution is
strongly skewed, with high outliers.

The first step is to abandon the mean as a measure of center in favor of a
statistic that is more resistant to outliers. We might choose the median, but in
this case we will use the 25% trimmed mean, the mean of the middle 50% of theLOOK BACK

trimmed mean,
page 53

observations. The median is the middle or mean of the 2 middle observations.
The trimmed mean often does a better job of representing the average of typical
observations than does the median.

Our parameter is the 25% trimmed mean of the population of all real estate
sales prices in Seattle in 2002. By the plug-in principle, the statistic that esti-
mates this parameter is the 25% trimmed mean of the sample prices in Table
16.1. Because 25% of 50 is 12.5, we drop the 12 lowest and 12 highest prices
in Table 16.1 and find the mean of the remaining 26 prices. The statistic is (in
thousands of dollars)

x25% = 244.0019

We can say little about the sampling distribution of the trimmed mean when
we have only 50 observations from a strongly skewed distribution. Fortunately,
we don’t need any distribution facts to use the bootstrap. We bootstrap the 25%
trimmed mean just as we bootstrapped the sample mean: draw 1000 resamples
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of size 50 from the 50 selling prices in Table 16.1, calculate the 25% trimmed
mean for each resample, and form the bootstrap distribution from these 1000
values.

Figure 16.7 shows the bootstrap distribution of the 25% trimmed mean.
Here is the summary output from S-PLUS:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

TrimMean 244 244.7 0.7171 16.83

What do we see? Shape: The bootstrap distribution is roughly Normal. This
suggests that the sampling distribution of the trimmed mean is also roughly
Normal. Center: The bootstrap estimate of bias is 0.7171, which is small rela-
tive to the value 244 of the statistic. So the statistic (the trimmed mean of the
sample) has small bias as an estimate of the parameter (the trimmed mean of
the population). Spread: The bootstrap standard error of the statistic is

SEboot = 16.83

This is an estimate of the standard deviation of the sampling distribution of the
trimmed mean.
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FIGURE 16.7 The bootstrap distribution of the 25% trimmed means of 1000 resamples
from the data in Table 16.1. The bootstrap distribution is roughly Normal.

Recall the familiar one-sample t confidence interval (page 420) for the mean
of a Normal population:

x ± t∗SE = x ± t∗
s√
n

This interval is based on the Normal sampling distribution of the sample mean
x and the formula SE = s/

√
n for the standard error of x. When a bootstrap

distribution is approximately Normal and has small bias, we can essentially use
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the same recipe with the bootstrap standard error to get a confidence interval
for any parameter.

BOOTSTRAP t CONFIDENCE INTERVAL

Suppose that the bootstrap distribution of a statistic from an SRS of
size n is approximately Normal and that the bootstrap estimate of bias
is small. An approximate level C confidence interval for the parameter
that corresponds to this statistic by the plug-in principle is

statistic ± t∗SEboot

where SEboot is the bootstrap standard error for this statistic and t∗ is the
critical value of the t(n − 1) distribution with area C between −t∗ and t∗.

•

•
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E 16.5 Bootstrap distribution of the trimmed mean. We want to esti-
mate the 25% trimmed mean of the population of all 2002 Seattle real estate
selling prices. Table 16.1 gives an SRS of size n = 50. The software output
above shows that the trimmed mean of this sample is x25% = 244 and that
the bootstrap standard error of this statistic is SEboot = 16.83. A 95% confi-
dence interval for the population trimmed mean is therefore

x25% ± t∗SEboot = 244 ± (2.009)(16.83)

= 244 ± 33.81

= (210.19, 277.81)

Because Table D does not have entries for n − 1 = 49 degrees of freedom, we
used t∗ = 2.009, the entry for 50 degrees of freedom.

We are 95% confident that the 25% trimmed mean (the mean of the mid-
dle 50%) for the population of real estate sales in Seattle in 2002 is between
$210,190 and $277,810.

USE YOUR KNOWLEDGE
16.12 Bootstrap t confidence interval for repair times. Refer to Exer-

cise 16.1. Suppose a bootstrap distribution was created using 1000
resamples, and the mean and standard deviation of the resample
sample means were 13.762 and 4.725, respectively.

(a) What is the bootstrap estimate of the bias?

(b) What is the bootstrap standard error of x?

(c) Assume the bootstrap distribution is reasonably Normal. Since
the bias is small relative to the observed x, the bootstrap t con-
fidence interval for the population mean μ is justified. Give the
95% bootstrap t confidence interval for μ.
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16.13 Bootstrap t confidence interval for average audio file length. Re-
turn to or create the bootstrap distribution resamples on the sample
mean for the audio file lengths in Exercise 16.8. In Example 7.11
(page 436), the t confidence interval for the average length was
constructed.

(a) Inspect the bootstrap distribution. Is a bootstrap t confidence in-
terval appropriate? Explain why or why not.

(b) Construct the 95% bootstrap t confidence interval.

(c) Compare the bootstrap results with the t confidence interval re-
ported in Example 7.11.

Bootstrapping to compare two groups
Two-sample problems are among the most common statistical settings. In
a two-sample problem, we wish to compare two populations, such as male
and female college students, based on separate samples from each popula-
tion. When both populations are roughly Normal, the two-sample t procedures
compare the two population means. The bootstrap can also compare two pop-LOOK BACK

two-sample t
significance test,
page 451

ulations, without the Normality condition and without the restriction to com-
parison of means. The most important new idea is that bootstrap resampling
must mimic the “separate samples” design that produced the original data.

BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes n and m from two populations:

1. Draw a resample of size n with replacement from the first sample and
a separate resample of size m from the second sample. Compute a statis-
tic that compares the two groups, such as the difference between the two
sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its shape,
bias, and bootstrap standard error in the usual way.

•
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E 16.6 Bootstrap comparison of average repair times. We saw in Ex-
ample 16.1 that Verizon is required to perform repairs for customers of com-
peting providers of telephone service (CLECs) within its region. How do
repair times for CLEC customers compare with times for Verizon’s own cus-
tomers? Figure 16.8 shows density curves and Normal quantile plots for the
service times (in hours) of 1664 repair requests from customers of Verizon
and 23 requests from customers of a CLEC during the same time period. The
distributions are both far from Normal. Here are some summary statistics:
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FIGURE 16.8 Density curves and Normal quantile plots of the distributions of repair
times for Verizon customers and customers of a CLEC. (The density curves extend below
zero because they smooth the data. There are no negative repair times.)

•

Service provider n x s

Verizon 1664 8.4 14.7
CLEC 23 16.5 19.5
Difference −8.1

The data suggest that repair times may be longer for CLEC customers. The
mean repair time, for example, is almost twice as long for CLEC customers
as for Verizon customers.

In the setting of Example 16.6 we want to estimate the difference in popula-
tion means, μ1 − μ2. We are reluctant to use the two-sample t confidence inter-
val because one of the samples is both small and very skewed. To compute the
bootstrap standard error for the difference in sample means x1 − x2, resample
separately from the two samples. Each of our 1000 resamples consists of two
group resamples, one of size 1664 drawn with replacement from the Verizon
data and one of size 23 drawn with replacement from the CLEC data. For each
combined resample, compute the statistic x1 − x2. The 1000 differences form
the bootstrap distribution. The bootstrap standard error is the standard devia-
tion of the bootstrap distribution.

S-PLUS automates the proper bootstrap procedure. Here is some of the
S-PLUS output:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

meanDiff -8.098 -8.251 -0.1534 4.052
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Figure 16.9 shows that the bootstrap distribution is not close to Normal. It
has a short right tail and a long left tail, so that it is skewed to the left. Because
the bootstrap distribution is non-Normal, we can’t trust the bootstrap t confidence
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AUTION ! interval. When the sampling distribution is non-Normal, no method based on
Normality is safe. Fortunately, there are more general ways of using the boot-
strap to get confidence intervals that can be safely applied when the bootstrap
distribution is not Normal. These methods, which we discuss in Section 16.4,
are the next step in practical use of the bootstrap.
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FIGURE 16.9 The bootstrap distribution of the difference in means for the Verizon and
CLEC repair time data.

USE YOUR KNOWLEDGE
16.14 Bootstrap comparison of average reading abilities. Table 7.4

(page 452) gives the scores on a test of reading ability for two groups
of third-grade students. The treatment group used “directed read-
ing activities,” and the control group followed the same curriculum
without the activities.

(a) Bootstrap the difference in means x1 − x2 and report the boot-
strap standard error.

(b) Inspect the bootstrap distribution. Is a bootstrap t confidence in-
terval appropriate? If so, give a 95% confidence interval.

(c) Compare the bootstrap results with the two-sample t confidence
interval reported on page 455.

16.15 Formula-based versus bootstrap standard error. We have a for-
mula (page 450) for the standard error of x1 − x2. This formula does
not depend on Normality. How does this formula-based standard er-
ror for the data of Example 16.6 compare with the bootstrap stan-
dard error?



16-20
•

CHAPTER 16 • Bootstrap Methods and Permutation Tests

BEYOND THE BASICS

The Bootstrap for a Scatterplot Smoother

The bootstrap idea can be applied to quite complicated statistical methods,
such as the scatterplot smoother illustrated in Chapter 2 (page 92).

•

•
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E 16.7 Do all daily numbers have an equal payout? The New Jersey

Pick-It Lottery is a daily numbers game run by the state of New Jersey. We’ll
analyze the first 254 drawings after the lottery was started in 1975.7 Buying
a ticket entitles a player to pick a number between 000 and 999. Half of the
money bet each day goes into the prize pool. (The state takes the other half.)
The state picks a winning number at random, and the prize pool is shared
equally among all winning tickets.

Although all numbers are equally likely to win, numbers chosen by fewer
people have bigger payoffs if they win because the prize is shared among
fewer tickets. Figure 16.10 is a scatterplot of the first 254 winning numbers
and their payoffs. What patterns can we see?
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FIGURE 16.10 The first 254
winning numbers in the New
Jersey Pick-It Lottery and the
payoffs for each, for Example
16.7. To see patterns we use
least-squares regression (line)
and a scatterplot smoother
(curve).

The straight line in Figure 16.10 is the least-squares regression line. The line
shows a general trend of higher payoffs for larger winning numbers. The curve
in the figure was fitted to the plot by a scatterplot smoother that follows local
patterns in the data rather than being constrained to a straight line. The curve
suggests that there were larger payoffs for numbers in the intervals 000 to 100,
400 to 500, 600 to 700, and 800 to 999. When people pick “random” numbers,
they tend to choose numbers starting with 2, 3, 5, or 7, so these numbers have
lower payoffs. This pattern disappeared after 1976; it appears that players no-
ticed the pattern and changed their number choices.
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Are the patterns displayed by the scatterplot smoother just chance? We can
use the bootstrap distribution of the smoother’s curve to get an idea of how
much random variability there is in the curve. Each resample “statistic” is now
a curve rather than a single number. Figure 16.11 shows the curves that result
from applying the smoother to 20 resamples from the 254 data points in Figure
16.10. The original curve is the thick line. The spread of the resample curves
about the original curve shows the sampling variability of the output of the
scatterplot smoother.
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FIGURE 16.11 The curves
produced by the scatterplot
smoother for 20 resamples from
the data displayed in Figure
16.10. The curve for the original
sample is the heavy line.

Nearly all the bootstrap curves mimic the general pattern of the original
smoother curve, showing, for example, the same low average payoffs for num-
bers in the 200s and 300s. This suggests that these patterns are real, not just
chance.

SECTION 16.2 Summary

Bootstrap distributions mimic the shape, spread, and bias of sampling distri-
butions.

The bootstrap standard error SEboot of a statistic is the standard deviation
of its bootstrap distribution. It measures how much the statistic varies under
random sampling.

The bootstrap estimate of the bias of a statistic is the mean of the bootstrap
distribution minus the statistic for the original data. Small bias means that the
bootstrap distribution is centered at the statistic of the original sample and sug-
gests that the sampling distribution of the statistic is centered at the population
parameter.

The bootstrap can estimate the sampling distribution, bias, and standard er-
ror of a wide variety of statistics, such as the trimmed mean, whether or not
statistical theory tells us about their sampling distributions.
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If the bootstrap distribution is approximately Normal and the bias is small, we
can give a bootstrap t confidence interval, statistic ± t∗SEboot, for the pa-
rameter. Do not use this t interval if the bootstrap distribution is not Normal
or shows substantial bias.

SECTION 16.2 Exercises
For Exercises 16.12 and 16.13, see pages 16-16 and 16-17;
and for Exercises 16.14 and 16.15, see page 16-19.

16.16 Bootstrap t confidence interval for listening
times. Return to or re-create the bootstrap
distribution of the sample mean for the 8 listening
times in Exercise 16.6.

(a) Although the sample is small, verify using
graphs and numerical summaries of the bootstrap
distribution that the distribution is reasonably
Normal and that the bias is small relative to the
observed x.

(b) The bootstrap t confidence interval for the
population mean μ is therefore justified. Give the
95% bootstrap t confidence interval for μ.

(c) Give the usual t 95% interval and compare it
with your interval from (b).

16.17 Bootstrap t confidence interval for survival
times. Return to or re-create the bootstrap
distribution of the sample mean for the 72 guinea
pig survival times in Exercise 16.10.

(a) What is the bootstrap estimate of the bias?
Verify from the graphs of the bootstrap distribution
that the distribution is reasonably Normal (some
right-skew remains) and that the bias is small
relative to the observed x. The bootstrap t
confidence interval for the population mean μ

is therefore justified.

(b) Give the 95% bootstrap t confidence interval
for μ.

(c) The only difference between the bootstrap t
and usual one-sample t confidence intervals is that
the bootstrap interval uses SEboot in place of the
formula-based standard error s/

√
n. What are the

values of the two standard errors? Give the usual
t 95% interval and compare it with your interval
from (b).

16.18 Another bootstrap distribution of the trimmed
mean. Bootstrap distributions and quantities
based on them differ randomly when we repeat
the resampling process. A key fact is that they do
not differ very much if we use a large number
of resamples. Figure 16.7 shows one bootstrap

distribution for the trimmed mean selling price
for Seattle real estate. Repeat the resampling of
the data in Table 16.1 to get another bootstrap
distribution for the trimmed mean.

(a) Plot the bootstrap distribution and compare
it with Figure 16.7. Are the two bootstrap
distributions similar?

(b) What are the values of the mean statistic,
bias, and bootstrap standard error for your new
bootstrap distribution? How do they compare with
the previous values given on page 16-15?

(c) Find the 95% bootstrap t confidence interval
based on your bootstrap distribution. Compare it
with the previous result in Example 16.5.

16.19 Bootstrap distribution of the standard deviation
s. For Example 16.5 we bootstrapped the 25%
trimmed mean of the 50 selling prices in Table
16.1. Another statistic whose sampling distribution
is unknown to us is the standard deviation s.
Bootstrap s for these data. Discuss the shape and
bias of the bootstrap distribution. Is the bootstrap
t confidence interval for the population standard
deviation σ justified? If it is, give a 95% confidence
interval.

16.20 Bootstrap comparison of tree diameters.
In Exercise 7.81 (page 471) you were asked to
compare the mean diameter at breast height
(DBH) for trees from the northern and southern
halves of a land tract using a random sample of 30
trees from each region.

(a) Use a back-to-back stemplot or side-by-side
boxplots to examine the data graphically. Does it
appear reasonable to use standard t procedures?

(b) Bootstrap the difference in means xNorth − xSouth

and look at the bootstrap distribution. Does it meet
the conditions for a bootstrap t confidence interval?

(c) Report the bootstrap standard error and the
95% bootstrap t confidence interval.

(d) Compare the bootstrap results with the usual
two-sample t confidence interval.

16.21 Bootstrapping a Normal data set. The following
data are “really Normal.” They are an SRS from the
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standard Normal distribution N(0, 1), produced by
a software Normal random number generator.

0.01 −0.04 −1.02 −0.13 −0.36 −0.03 −1.88 0.34 −0.00 1.21
−0.02 −1.01 0.58 0.92 −1.38 −0.47 −0.80 0.90 −1.16 0.11

0.23 2.40 0.08 −0.03 0.75 2.29 −1.11 −2.23 1.23 1.56
−0.52 0.42 −0.31 0.56 2.69 1.09 0.10 −0.92 −0.07 −1.76

0.30 −0.53 1.47 0.45 0.41 0.54 0.08 0.32 −1.35 −2.42
0.34 0.51 2.47 2.99 −1.56 1.27 1.55 0.80 −0.59 0.89

−2.36 1.27 −1.11 0.56 −1.12 0.25 0.29 0.99 0.10 0.30
0.05 1.44 −2.46 0.91 0.51 0.48 0.02 −0.54

(a) Make a histogram and Normal quantile plot.
Do the data appear to be “really Normal”? From
the histogram, does the N(0, 1) distribution appear
to describe the data well? Why?

(b) Bootstrap the mean. Why do your bootstrap
results suggest that t confidence intervals are
appropriate?

(c) Give both the bootstrap and the formula-based
standard errors for x. Give both the bootstrap and
usual t 95% confidence intervals for the population
mean μ.

16.22 Bootstrap distribution of the median. We will see
in Section 16.3 that bootstrap methods often work
poorly for the median. To illustrate this, bootstrap
the sample median of the 50 selling prices in Table
16.1. Why is the bootstrap t confidence interval not
justified?

16.23 Do you feel lucky? Exercise 7.29 (page 443) gives
data on 60 children who said how big a part they
thought luck played in solving puzzles. The data
have a discrete 1 to 10 scale. Is inference based on
t distributions nonetheless justified? Explain your
answer. If t inference is justified, compare the usual
t and the bootstrap t 95% confidence intervals.

16.24 Bootstrap distribution of the mpg standard
deviation. Computers in some vehicles calculate
various quantities related to performance. One
of these is the fuel efficiency, or gas mileage,
usually expressed as miles per gallon (mpg). For
one vehicle equipped in this way, the mpg were
recorded each time the gas tank was filled, and the
computer was then reset.8 Here are the mpg values
for a random sample of 20 of these records:

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

In addition to the average mpg, the driver is also
interested in how much variability there is in the
mpg.

(a) Calculate the sample standard deviation s for
these mpg values.

(b) We have no formula for the standard error of
s. Find the bootstrap standard error for s.

(c) What does the standard error indicate about
how accurate the sample standard deviation is as
an estimate of the population standard deviation?

(d) Would it be appropriate to give a bootstrap
t interval for the population standard deviation?
Why or why not?

16.25 C
H

ALLENG
E The really rich. Each year, the business

magazine Forbes publishes a list of the
world’s billionaires. In 2006, the magazine found
793 billionaires. Here is the wealth, as estimated
by Forbes and rounded to the nearest $100 million,
of an SRS of 20 of these billionaires:9

2.9 15.9 4.1 1.7 3.3 1.1 2.7 13.6 2.2 2.5
3.4 4.3 2.7 1.2 2.8 1.1 4.4 2.1 1.4 2.6

Suppose you are interested in “the wealth of
typical billionaires.” Bootstrap an appropriate
statistic, inspect the bootstrap distribution, and
draw conclusions based on this sample.

16.26 Comparing the average repair time bootstrap
distributions. Why is the bootstrap distribution of
the difference in mean Verizon and CLEC repair
times in Figure 16.9 so skewed? Let’s investigate
by bootstrapping the mean of the CLEC data and
comparing it with the bootstrap distribution for
the mean for Verizon customers. The 23 CLEC
repair times (in hours) are

26.62 8.60 0.00 21.15 8.33 20.28 96.32 17.97
3.42 0.07 24.38 19.88 14.33 5.45 5.40 2.68
0.00 24.20 22.13 18.57 20.00 14.13 5.80

(a) Bootstrap the mean for the CLEC data.
Compare the bootstrap distribution with the
bootstrap distribution of the Verizon repair times
in Figure 16.3.

(b) Based on what you see in (a), what is the source
of the skew in the bootstrap distribution of the
difference in means x1 − x2?
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16.3 How Accurate Is a Bootstrap
Distribution?*
We said earlier that “When can I safely bootstrap?” is a somewhat subtle issue.
Now we will give some insight into this issue.

We understand that a statistic will vary from sample to sample and infer-
ence about the population must take this random variation into account. The
sampling distribution of a statistic displays the variation in the statistic due to
selecting samples at random from the population. For example, the margin of
error in a confidence interval expresses the uncertainty due to sampling vari-
ation. In this chapter we have used the bootstrap distribution as a substitute
for the sampling distribution. This introduces a second source of random vari-
ation: choosing resamples at random from the original sample.

SOURCES OF VARIATION AMONG BOOTSTRAP DISTRIBUTIONS

Bootstrap distributions and conclusions based on them include two
sources of random variation:

1. Choosing an original sample at random from the population.

2. Choosing bootstrap resamples at random from the original sample.

A statistic in a given setting has only one sampling distribution. It has many
bootstrap distributions, formed by the two-step process just described. Boot-
strap inference generates one bootstrap distribution and uses it to tell us about
the sampling distribution. Can we trust such inference?

Figure 16.12 displays an example of the entire process. The population dis-
tribution (top left) has two peaks and is far from Normal. The histograms in the
left column of the figure show five random samples from this population, each
of size 50. The line in each histogram marks the mean x of that sample. These
vary from sample to sample. The distribution of the x-values from all possible
samples is the sampling distribution. This sampling distribution appears to the
right of the population distribution. It is close to Normal, as we expect because
of the central limit theorem.

The middle column in Figure 16.12 displays a bootstrap distribution of x
for each of the five samples. Each distribution was created by drawing 1000 re-
samples from the original sample, calculating x for each resample, and present-
ing the 1000 x’s in a histogram. The right column shows the results of repeating
the resampling from the first sample five more times.

Compare the five bootstrap distributions in the middle column to see the
effect of the random choice of the original sample. Compare the six bootstrap
distributions drawn from the first sample to see the effect of the random re-
sampling. Here’s what we see:

• Each bootstrap distribution is centered close to the value of x for its original
sample. That is, the bootstrap estimate of bias is small in all five cases. Of
course, the five x-values vary, and not all are close to the population mean μ.

*This section is optional.
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FIGURE 16.12 Five random
samples (n = 50) from the same
population, with a bootstrap
distribution for the sample mean
formed by resampling from each
of the five samples. At the right
are five more bootstrap
distributions from the first
sample.
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• The shape and spread of the bootstrap distributions in the middle column
vary a bit, but all five resemble the sampling distribution in shape and spread.
That is, the shape and spread of a bootstrap distribution depend on the orig-
inal sample, but the variation from sample to sample is not great.

• The six bootstrap distributions from the same sample are very similar in
shape, center, and spread. That is, random resampling adds very little varia-
tion to the variation due to the random choice of the original sample from the
population.

Figure 16.12 reinforces facts that we have already relied on. If a bootstrap
distribution is based on a moderately large sample from the population, its
shape and spread don’t depend heavily on the original sample and do mimic
the shape and spread of the sampling distribution. Bootstrap distributions do
not have the same center as the sampling distribution; they mimic bias, not the
actual center. The figure also illustrates a fact that is important for practical
use of the bootstrap: the bootstrap resampling process (using 1000 or more re-
samples) introduces very little additional variation. We can rely on a bootstrap
distribution to inform us about the shape, bias, and spread of the sampling
distribution.

Bootstrapping small samples
We now know that almost all of the variation among bootstrap distributions for
a statistic such as the mean comes from the random selection of the original
sample from the population. We also know that in general statisticians prefer
large samples because small samples give more variable results. This general
fact is also true for bootstrap procedures.

Figure 16.13 repeats Figure 16.12, with two important differences. The five
original samples are only of size n = 9, rather than the n = 50 of Figure 16.12.
Also, the population distribution (top left) is Normal, so that the sampling dis-
tribution of x is Normal despite the small sample size. Even with a Normal
population distribution, the bootstrap distributions in the middle column show
much more variation in shape and spread than those for larger samples in Fig-
ure 16.12. Notice, for example, how the skewness of the fourth sample produces
a skewed bootstrap distribution. The bootstrap distributions are no longer all
similar to the sampling distribution at the top of the column. We can’t trust a

    
 C

AUTION ! bootstrap distribution from a very small sample to closely mimic the shape and
spread of the sampling distribution. Bootstrap confidence intervals will some-
times be too long or too short, or too long in one direction and too short in
the other. The six bootstrap distributions based on the first sample are again
very similar. Because we used 1000 resamples, resampling adds very little vari-
ation. There are subtle effects that can’t be seen from a few pictures, but the
main conclusions are clear.

VARIATION IN BOOTSTRAP DISTRIBUTIONS

For most statistics, almost all the variation among bootstrap distribu-
tions comes from the selection of the original sample from the popula-
tion. You can reduce this variation by using a larger original sample.
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FIGURE 16.13 Five random
samples (n = 9) from the same
population, with a bootstrap
distribution for the sample mean
formed by resampling from each
of the five samples. At the right
are five more bootstrap
distributions from the first
sample.
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Bootstrapping does not overcome the weakness of small samples as a
basis for inference. We will describe some bootstrap procedures that are
usually more accurate than standard methods, but even they may not be
accurate for very small samples. Use caution in any inference—including
bootstrap inference—from a small sample.

The bootstrap resampling process using 1000 or more resamples intro-
duces very little additional variation.

Bootstrapping a sample median
In dealing with the real estate sales prices in Example 16.4, we chose to boot-
strap the 25% trimmed mean rather than the median. We did this in part be-
cause the usual bootstrapping procedure doesn’t work well for the median
unless the original sample is quite large. Now we will bootstrap the median in
order to understand the difficulties.

Figure 16.14 follows the format of Figures 16.12 and 16.13. The population
distribution appears at top left, with the population median M marked. Below
in the left column are five samples of size n = 15 from this population, with
their sample medians m marked. Bootstrap distributions for the median based
on resampling from each of the five samples appear in the middle column. The
right column again displays five more bootstrap distributions from resampling
the first sample. The six bootstrap distributions from the same sample are once
again very similar to each other—resampling adds little variation—so we con-
centrate on the middle column in the figure.

Bootstrap distributions from the five samples differ markedly from each
other and from the sampling distribution at the top of the column. Here’s why.
The median of a resample of size 15 is the 8th-largest observation in the re-
sample. This is always one of the 15 observations in the original sample and is
usually one of the middle observations. Each bootstrap distribution therefore
repeats the same few values, and these values depend on the original sample.
The sampling distribution, on the other hand, contains the medians of all pos-
sible samples and is not confined to a few values.

The difficulty is somewhat less when n is even, because the median is then
the average of two observations. It is much less for moderately large samples,
say n = 100 or more. Bootstrap standard errors and confidence intervals from
such samples are reasonably accurate, though the shapes of the bootstrap dis-
tributions may still appear odd. You can see that the same difficulty will occur
for small samples with other statistics, such as the quartiles, that are calculated
from just one or two observations from a sample.

There are more advanced variations of the bootstrap idea that improve per-
formance for small samples and for statistics such as the median and quartiles.
Unless you have expert advice or undertake further study, avoid bootstrapping the
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median and quartiles unless your sample is rather large.

SECTION 16.3 Summary

Almost all of the variation among bootstrap distributions for a statistic is due to
the selection of the original random sample from the population. Resampling
introduces little additional variation.
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FIGURE 16.14 Five random
samples (n = 15) from the same
population, with a bootstrap
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Bootstrap distributions based on small samples can be quite variable. Their
shape and spread reflect the characteristics of the sample and may not accu-
rately estimate the shape and spread of the sampling distribution. Bootstrap
inference from a small sample may therefore be unreliable.

Bootstrap inference based on samples of moderate size is unreliable for statis-
tics like the median and quartiles that are calculated from just a few of the
sample observations.

SECTION 16.3 Exercises
16.27 Bootstrap versus sampling distribution. Most

statistical software includes a function to generate
samples from Normal distributions. Set the mean
to 8.4 and the standard deviation to 14.7. You can
think of all the numbers that would be produced
by this function if it ran forever as a population
that has the N(8.4, 14.7) distribution. Samples
produced by the function are samples from this
population.

(a) What is the exact sampling distribution of the
sample mean x for a sample of size n from this
population?

(b) Draw an SRS of size n = 10 from this
population. Bootstrap the sample mean x
using 1000 resamples from your sample. Give
a histogram of the bootstrap distribution and the
bootstrap standard error.

(c) Repeat the same process for samples of sizes
n = 40 and n = 160.

(d) Write a careful description comparing the
three bootstrap distributions and also comparing
them with the exact sampling distribution. What
are the effects of increasing the sample size?

16.28 The effect of increasing sample size. The data for
Example 16.1 are 1664 repair times for customers
of Verizon, the local telephone company in their
area. In that example, these observations formed a
sample. Now we will treat these 1664 observations
as a population. The population distribution is

pictured in Figures 16.1 and 16.8. It is very non-
Normal. The population mean is μ = 8.4, and the
population standard deviation is σ = 14.7.

(a) Although we don’t know the shape of the
sampling distribution of the sample mean x for
a sample of size n from this population, we do
know the mean and standard deviation of this
distribution. What are they?

(b) Draw an SRS of size n = 10 from this
population. Bootstrap the sample mean x
using 1000 resamples from your sample. Give
a histogram of the bootstrap distribution and the
bootstrap standard error.

(c) Repeat the same process for samples of sizes
n = 40 and n = 160.

(d) Write a careful description comparing the
three bootstrap distributions. What are the effects
of increasing the sample size?

16.29 The effect of non-Normality. The populations in
the two previous exercises have the same mean and
standard deviation, but one is very close to Normal
and the other is strongly non-Normal. Based
on your work in these exercises, how does non-
Normality of the population affect the bootstrap
distribution of x? How does it affect the bootstrap
standard error? Do either of these effects diminish
when we start with a larger sample? Explain what
you have observed based on what you know about
the sampling distribution of x and the way in
which bootstrap distributions mimic the sampling
distribution.

16.4 Bootstrap Confidence Intervals
Till now, we have met just one type of inference procedure based on resampling,
the bootstrap t confidence intervals. We can calculate a bootstrap t confidence
interval for any parameter by bootstrapping the corresponding statistic. We
don’t need conditions on the population or special knowledge about the sam-
pling distribution of the statistic. The flexible and almost automatic nature of
bootstrap t intervals is appealing—but there is a catch. These intervals work
well only when the bootstrap distribution tells us that the sampling distribu-
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tion is approximately Normal and has small bias. How well must these condi-
tions be met? What can we do if we don’t trust the bootstrap t interval? In this
section we will see how to quickly check t confidence intervals for accuracy and
will learn alternative bootstrap confidence intervals that can be used more gen-
erally than the bootstrap t.

Bootstrap percentile confidence intervals
Confidence intervals are based on the sampling distribution of a statistic. If a
statistic has no bias as an estimator of a parameter, its sampling distribution is
centered at the true value of the parameter. We can then get a 95% confidence
interval by marking off the central 95% of the sampling distribution. The t crit-
ical values in a t confidence interval are a shortcut to marking off the central
95%.

This shortcut doesn’t work under all conditions—it depends both on lack
of bias and on Normality. One way to check whether t intervals (using either
bootstrap or formula-based standard errors) are reasonable is to compare them
with the central 95% of the bootstrap distribution. The 2.5% and 97.5% per-
centiles mark off the central 95%. The interval between the 2.5% and 97.5%
percentiles of the bootstrap distribution is often used as a confidence interval
in its own right. It is known as a bootstrap percentile confidence interval.

BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS

The interval between the 2.5% and 97.5% percentiles of the bootstrap
distribution of a statistic is a 95% bootstrap percentile confidence in-
terval for the corresponding parameter. Use this method when the boot-
strap estimate of bias is small.

The conditions for safe use of bootstrap t and bootstrap percentile inter-
vals are a bit vague. We recommend that you check whether these intervals
are reasonable by comparing them with each other. If the bias of the bootstrap
distribution is small and the distribution is close to Normal, the bootstrap t
and percentile confidence intervals will agree closely. Percentile intervals, un-
like t intervals, do not ignore skewness. Percentile intervals are therefore usu-
ally more accurate, as long as the bias is small. Because we will soon meet much
more accurate bootstrap intervals, our recommendation is that, when bootstrap
t and bootstrap percentile intervals do not agree closely, neither type of interval

    
 C

AUTION !
should be used.

•

E
X

A
M

P
L

E 16.8 Bootstrap percentile confidence interval for the trimmed mean.
In Example 16.5 (page 16-16) we found that a 95% bootstrap t confidence in-
terval for the 25% trimmed mean of Seattle real estate sales prices is 210.2
to 277.8. The bootstrap distribution in Figure 16.7 shows a small bias and,
though roughly Normal, is a bit skewed. Is the bootstrap t confidence inter-
val accurate for these data?

The S-PLUS bootstrap output includes the 2.5% and 97.5% percentiles of
the bootstrap distribution (for example, see Figure 16.5). For this bootstrap
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sample they are 213.1 and 279.4. These are the endpoints of the 95% boot-
strap percentile confidence interval. This interval is quite close to the boot-
strap t interval. We conclude that both intervals are reasonably accurate.

The bootstrap t interval for the trimmed mean of real estate sales in Example
16.8 is

x25% ± t∗SEboot = 244 ± 33.81

We can learn something by also writing the percentile interval starting at the
statistic x25% = 244. In this form, it is

244.0 − 30.9, 244.0 + 35.4

Unlike the t interval, the percentile interval is not symmetric—its endpoints are
different distances from the statistic. The slightly greater distance to the 97.5%
percentile reflects the slight right-skewness of the bootstrap distribution.

USE YOUR KNOWLEDGE
16.30 Determining the percentile endpoints. What percentiles of the

bootstrap distribution are the endpoints of a 90% bootstrap per-
centile confidence interval? Of a 98% bootstrap percentile confidence
interval?

16.31 Bootstrap percentile confidence interval for average repair time.
Consider the small random subset of the Verizon data in Exercise 16.1.
Bootstrap the sample mean using 1000 resamples.

(a) Make a histogram and Normal quantile plot. Does the bootstrap
distribution appear close to Normal? Is the bias small relative to
the observed sample mean?

(b) Find the 95% bootstrap t confidence interval.

(c) Give the 95% bootstrap percentile confidence interval and com-
pare it with the interval in (b).

More accurate bootstrap confidence intervals:
BCa and tilting
Any method for obtaining confidence intervals requires some conditions in
order to produce exactly the intended confidence level. These conditions (for
example, Normality) are never exactly met in practice. So a 95% confidence in-
terval in practice will not capture the true parameter value exactly 95% of the
time. In addition to “hitting” the parameter 95% of the time, a good confidence
interval should divide its 5% of “misses” equally between high misses and low
misses. We will say that a method for obtaining 95% confidence intervals is
accurate in a particular setting if 95% of the time it produces intervals thataccurate
capture the parameter and if the 5% misses are shared equally between high
and low misses. Perfect accuracy isn’t available in practice, but some methods
are more accurate than others.
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One advantage of the bootstrap is that we can to some extent check the ac-
curacy of the bootstrap t and percentile confidence intervals by examining the
bootstrap distribution for bias and skewness and by comparing the two inter-
vals with each other. The interval in Example 16.8 reveals some right-skewness,
but not enough to invalidate inference. The bootstrap distribution in Figure
16.9 (page 16-19) for comparing two means, on the other hand, is so skewed
that we hesitate to use the t or percentile intervals. In general, the t and per-
centile intervals may not be sufficiently accurate when

• the statistic is strongly biased, as indicated by the bootstrap estimate of bias;

• the sampling distribution of the statistic is clearly skewed, as indicated by the
bootstrap distribution and by comparing the t and percentile intervals; or

• we require high accuracy because the stakes are high (for example, large
sums of money or public welfare involved).

Most confidence interval procedures are more accurate for larger sample
sizes. The t and percentile procedures improve only slowly: they require 100
times more data to improve accuracy by a factor of 10. (Recall the

√
n in the

formula for the usual one-sample t interval.) These intervals may not be very
accurate except for quite large sample sizes. There are more elaborate boot-
strap procedures that improve faster, requiring only 10 times more data to im-
prove accuracy by a factor of 10. These procedures are quite accurate unless
the sample size is very small.

BCA AND TILTING CONFIDENCE INTERVALS

The bootstrap bias-corrected accelerated (BCa) interval is a modifi-
cation of the percentile method that adjusts the percentiles to correct for
bias and skewness.

The bootstrap tilting interval adjusts the process of randomly forming
resamples (though a clever implementation allows use of the same re-
samples as other bootstrap methods).

These two methods are accurate in a wide variety of settings, have reason-
able computation requirements (by modern standards), and do not produce
excessively wide intervals. The BCa intervals are more widely used. Both are
based on the key ideas of resampling and the bootstrap distribution. Now that
you understand these concepts, you should always use one of these more ac-
curate methods if your software offers them. We did not meet them earlier be-
cause the details of producing the confidence intervals are quite technical.10

The BCa method requires more than 1000 resamples for high accuracy. Use
5000 or more resamples if the accuracy of inference is very important. Tilting
is more efficient, so that 1000 resamples are generally enough. Don’t forget that
even BCa and tilting confidence intervals should be used cautiously when sample
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essary corrections for bias and skewness.
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E 16.9 The BCa and tilting confidence interval for the trimmed mean.
The 2002 Seattle real estate sales data are strongly skewed (Figure 16.6). Fig-
ure 16.15 shows the bootstrap distribution of the sample mean x. We see that
the skewness persists in the bootstrap distribution and therefore in the sam-
pling distribution. Inference based on a Normal sampling distribution is not
appropriate.

We generally prefer resistant measures of center such as the median or
trimmed mean for skewed data. Accordingly, in Example 16.5 (page 16-16)
we bootstrapped the 25% trimmed mean. However, the mean is easily under-
stood by the public and is needed for some purposes, such as projecting taxes
based on total sales value.

The bootstrap t and percentile intervals aren’t reliable when the sampling
distribution of the statistic is skewed. Figure 16.16 shows software output
that includes all four of the bootstrap confidence intervals we have men-
tioned, along with the traditional one-sample t interval.

The BCa interval is

(329.3 − 62.2, 329.3 + 127.0) = (267.1, 456.3)

and the tilting interval is

(329.3 − 66.2, 329.3 + 125.9) = (263.1, 455.2)

These intervals agree closely. Both are strongly asymmetrical: the upper end-
point is about twice as far from the sample mean as the lower endpoint. This
reflects the strong right-skewness of the bootstrap distribution.

The output in Figure 16.16 also shows that both endpoints of the less-
accurate intervals (one-sample t, bootstrap t, and percentile) are too low. These

200 300 400 500

Observed
Mean

Resample means (in $1000s)

FIGURE 16.15 The bootstrap
distribution of the sample means
of 5000 resamples from the data
in Table 16.1, for Example 16.9.
The bootstrap distribution is
right-skewed, so we conclude
that the sampling distribution of
x is right-skewed as well.
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FIGURE 16.16 S-PLUS output
for bootstrapping the mean of
the Seattle real estate selling
price data, for Example 16.9. The
output includes four types of
confidence intervals for the
population mean.

intervals miss the population mean on the low side too often (more than 2.5%)
and miss on the high side too seldom. They give a biased picture of where the
true mean is likely to be.

While the BCa and tilting calculations are radically different, the results
tend to be about the same, except for random variation in the BCa if the num-
ber of resamples is less than about 5000. Both procedures are accurate, so we
expect them to produce similar results unless a small sample size makes any
inference dubious.

Confidence intervals for the correlation
The bootstrap allows us to find confidence intervals for a wide variety of statis-
tics. So far, we have looked at the sample mean, trimmed mean, and difference
between means, using a variety of different bootstrap confidence intervals. The
choice of interval depended on the shape of the bootstrap distribution and the
desired accuracy. Now we will bootstrap the correlation coefficient. This is our
first use of the bootstrap for a statistic that depends on two related variables.
As with the difference in means, we must pay attention to how we should re-
sample.

•
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E 16.10 Correlation between baseball salary and performance. Major
League Baseball (MLB) owners claim they need limitations on player salaries
to maintain competitiveness among richer and poorer teams. This argument
assumes that higher salaries attract better players. Is there a relationship be-
tween an MLB player’s salary and his performance, as measured by career
batting average?
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Table 16.2 contains the names, 2002 salaries, and career batting averages
of 50 randomly selected MLB players (excluding pitchers).11 The scatterplot
in Figure 16.17 suggests that the relationship between salary and batting av-
erage is weak. The sample correlation is r = 0.107. Is this small correlation
significantly different from 0? To find out, we can calculate a 95% confidence
interval for the population correlation and see whether or not it covers 0. If
the confidence interval does not cover 0, the observed correlation is signifi-
cant at the 5% level.

TABLE 16.2

Major League Baseball salaries and batting averages

Name Salary Average Name Salary Average

Matt Williams $9,500,000 0.269 Greg Colbrunn $1,800,000 0.307
Jim Thome $8,000,000 0.282 Dave Martinez $1,500,000 0.276
Jim Edmonds $7,333,333 0.327 Einar Diaz $1,087,500 0.216
Fred McGriff $7,250,000 0.259 Brian L. Hunter $1,000,000 0.289
Jermaine Dye $7,166,667 0.240 David Ortiz $950,000 0.237
Edgar Martinez $7,086,668 0.270 Luis Alicea $800,000 0.202
Jeff Cirillo $6,375,000 0.253 Ron Coomer $750,000 0.344
Rey Ordonez $6,250,000 0.238 Enrique Wilson $720,000 0.185
Edgardo Alfonzo $6,200,000 0.300 Dave Hansen $675,000 0.234
Moises Alou $6,000,000 0.247 Alfonso Soriano $630,000 0.324
Travis Fryman $5,825,000 0.213 Keith Lockhart $600,000 0.200
Kevin Young $5,625,000 0.238 Mike Mordecai $500,000 0.214
M. Grudzielanek $5,000,000 0.245 Julio Lugo $325,000 0.262
Tony Batista $4,900,000 0.276 Mark L. Johnson $320,000 0.207
Fernando Tatis $4,500,000 0.268 Jason LaRue $305,000 0.233
Doug Glanville $4,000,000 0.221 Doug Mientkiewicz $285,000 0.259
Miguel Tejada $3,625,000 0.301 Jay Gibbons $232,500 0.250
Bill Mueller $3,450,000 0.242 Corey Patterson $227,500 0.278
Mark McLemore $3,150,000 0.273 Felipe Lopez $221,000 0.237
Vinny Castilla $3,000,000 0.250 Nick Johnson $220,650 0.235
Brook Fordyce $2,500,000 0.208 Thomas Wilson $220,000 0.243
Torii Hunter $2,400,000 0.306 Dave Roberts $217,500 0.297
Michael Tucker $2,250,000 0.235 Pablo Ozuna $202,000 0.333
Eric Chavez $2,125,000 0.277 Alexis Sanchez $202,000 0.301
Aaron Boone $2,100,000 0.227 Abraham Nunez $200,000 0.224

How shall we resample from Table 16.2? Because each observation con-
sists of the batting average and salary for one player, we resample players.
Resampling batting averages and salaries separately would lose the tie be-
tween a player’s batting average and his salary. Software such as S-PLUS auto-
mates proper resampling. Once we have produced a bootstrap distribution by
resampling, we can examine the distribution and form a confidence interval
in the usual way. We need no special formulas or procedures to handle the
correlation.
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FIGURE 16.17 Career batting
average and 2002 salary for a
random sample of 50 Major
League Baseball players.

Figure 16.18 shows the bootstrap distribution and Normal quantile plot for
the sample correlation for 1000 resamples from the 50 players in our sample.
The bootstrap distribution is close to Normal and has small bias, so a 95% boot-
strap t confidence interval appears reasonable.

The bootstrap standard error is SEboot = 0.125. The t interval using the boot-
strap standard error is

r ± t∗SEboot = 0.107 ± (2.009)(0.125)

= 0.107 ± 0.251

= (−0.144, 0.358)
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FIGURE 16.18 The bootstrap distribution and Normal quantile plot for the correlation r
for 1000 resamples from the baseball player data in Table 16.2. The solid double-ended
arrow below the distribution is the t interval, and the dashed arrow is the percentile
interval.
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The 95% bootstrap percentile interval is

(2.5% percentile, 97.5% percentile) = (−0.128, 0.356)

= (0.107 − 0.235, 0.107 + 0.249)

The two confidence intervals are in reasonable agreement.
The confidence intervals give a wide range for the population correlation,

and both include 0. These data do not provide significant evidence that there
is a relationship between salary and batting average. A larger sample might re-
sult in a significant relationship, but the evidence from this sample suggests
that any relationship is quite weak. Of course, batting average is only one facet
of a player’s performance. It is possible that there may be a significant salary-
performance relationship if we include several measures of performance.

SECTION 16.4 Summary

Both bootstrap t and (when they exist) traditional z and t confidence intervals
require statistics with small bias and sampling distributions close to Normal.
We can check these conditions by examining the bootstrap distribution for bias
and lack of Normality.

The bootstrap percentile confidence interval for 95% confidence is the in-
terval from the 2.5% percentile to the 97.5% percentile of the bootstrap distri-
bution. Agreement between the bootstrap t and percentile intervals is an added
check on the conditions needed by the t interval. Do not use t or percentile in-
tervals if these conditions are not met.

When bias or skewness is present in the bootstrap distribution, use either a BCa
or bootstrap tilting interval. The t and percentile intervals are inaccurate un-
der these circumstances unless the sample sizes are very large. The tilting and
BCa confidence intervals adjust for bias and skewness and are generally accu-
rate except for small samples.

SECTION 16.4 Exercises
For Exercises 16.30 and 16.31, see page 16-32.

Many of these exercises require software that will
calculate accurate bootstrap confidence intervals. If your
software finds BCa but not tilting intervals, ignore requests
for tilting intervals. S-PLUS supplies both types.

16.32 Confidence interval for the average IQ score.
The distribution of the 60 IQ test scores in Table
1.3 (page 13) is roughly Normal (see Figure 1.7),
and the sample size is large enough that we expect
a Normal sampling distribution. We will compare
confidence intervals for the population mean IQ μ

based on this sample.

(a) Use the formula s/
√

n to find the standard error
of the mean. Give the 95% t confidence interval
based on this standard error.

(b) Bootstrap the mean of the IQ scores. Make
a histogram and Normal quantile plot of the
bootstrap distribution. Does the bootstrap
distribution appear Normal? What is the
bootstrap standard error? Give the bootstrap t
95% confidence interval.

(c) Give the 95% confidence percentile, BCa, and
tilting intervals. Make a graphical comparison by
drawing a vertical line at the original sample mean
x and displaying the five intervals horizontally, one
above the other. How well do your five confidence
intervals agree? Was bootstrapping needed to
find a reasonable confidence interval, or was the
formula-based confidence interval good enough?

16.33 Confidence interval for the Normal data set.
In Exercise 16.21 (page 16-22) you bootstrapped
the mean of a simulated SRS from the standard
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Normal distribution N(0, 1) and found the standard
t and bootstrap t 95% confidence intervals for the
mean.

(a) Find the bootstrap percentile 95% confidence
interval. Does this interval confirm that the t
intervals are acceptable?

(b) We know that the population mean is 0. Do the
confidence intervals capture this mean?

16.34 Using bootstrapping to check traditional
methods. Bootstrapping is a good way to check if
traditional inference methods are accurate for a
given sample. Consider the following data:

108 107 113 104 94 100 107 98 112 97 98 95 95 97
99 95 97 90 109 102 89 101 93 95 105 91 96 104
95 87 91 101 119 116 91 95 95 104 111 101 92 91

(a) Examine the data graphically. Do they appear
to violate any of the conditions needed to use the
one-sample t confidence interval for the population
mean?

(b) Calculate the 95% one-sample t confidence
interval for this sample.

(c) Bootstrap the data, and inspect the bootstrap
distribution of the mean. Does it suggest that a t
interval should be reasonably accurate? Calculate
the bootstrap t 95% interval.

(d) Find the 95% bootstrap percentile interval.
Does it agree with the two t intervals? What do you
conclude about the accuracy of the one-sample t
interval here?

16.35 Comparing bootstrap confidence intervals. The
graphs in Figure 16.15 do not appear to show any
important skewness in the bootstrap distribution
of the correlation for Example 16.9. Compare the
bootstrap percentile and bootstrap t intervals for
the correlation, given in the discussion of Example
16.9. Does the comparison suggest any skewness?

16.36 More on using bootstrapping to check
traditional methods. Continue to work with
the data given in Exercise 16.34.

(a) Find the bootstrap BCa or tilting 95%
confidence interval.

(b) Does your opinion of the robustness of the
one-sample t confidence interval change when
comparing it to the BCa or tilting interval?

(c) To check the accuracy of the one-sample t
confidence interval, would you generally use the

bootstrap percentile or BCa (or tilting) interval?
Explain.

16.37 BCa and tilting intervals for the correlation
coefficient. Find the BCa and tilting 95%
confidence intervals for the correlation between
baseball salaries and batting averages, from
the data in Table 16.2. Are these more accurate
intervals in general agreement with the bootstrap
t and percentile intervals? Do you still agree with
the judgment in the discussion of Example 16.9
that the simpler intervals are adequate?

16.38 Bootstrap confidence intervals for the average
audio file length. In Exercise 16.13, you found a
bootstrap t confidence interval for the population
mean μ. Careful examination of the bootstrap
distribution reveals a slight skewness in the right
tail. Is this something to be concerned about?
Bootstrap the mean and give all four bootstrap
95% confidence intervals: t, percentile, BCa, and
tilting. Make a graphical comparison by drawing
a vertical line at the original sample mean x and
displaying the four intervals horizontally, one
above the other. Discuss what you see.

16.39 Bootstrap confidence intervals for the average
survival time. The distribution of the 72 guinea
pig survival times in Table 1.8 (page 29) is strongly
skewed. In Exercise 16.17 (page 16-22) you found
a bootstrap t confidence interval for the population
mean μ, even though some skewness remains in
the bootstrap distribution. Bootstrap the mean
lifetime and give all four bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make a
graphical comparison by drawing a vertical line at
the original sample mean x and displaying the four
intervals horizontally, one above the other. Discuss
what you see. Do bootstrap t and percentile agree?
Do the more accurate intervals agree with the two
simpler methods?

16.40 Bootstrap confidence intervals for the standard
deviation s. We would like a 95% confidence
interval for the standard deviation σ of Seattle
real estate prices. Your work in Exercise 16.19
probably suggests that it is risky to bootstrap
the sample standard deviation s from the sample
in Table 16.1 and use the bootstrap t interval.
Now we have more accurate methods. Bootstrap
s and report all four bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make a
graphical comparison by drawing a vertical line
at the original s and displaying the four intervals
horizontally, one above the other. Discuss what you
see. Do bootstrap t and percentile agree? Do the
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more accurate intervals agree with the two simpler
methods? What interval would you use in a report
on real estate prices?

16.41 C
H

ALLENG
E The effect of decreasing sample size.

Exercise 16.11 (page 16-12) gives an SRS of
20 of the 72 guinea pig survival times in Table 1.8.
The bootstrap distribution of x from this sample
is clearly right-skewed. Give a 95% confidence
interval for the population mean μ based on
these data and a method of your choice. Describe
carefully how your result differs from the intervals
in Exercise 16.39, which use the full sample of 72
survival times.

16.42 C
H

ALLENG
E Bootstrap confidence interval for the

CLEC data. The CLEC data for Example
16.6 are strongly skewed to the right. The 23 CLEC
repair times appear in Exercise 16.26 (page 16-23).

(a) Bootstrap the mean of the data. Based on the
bootstrap distribution, which bootstrap confidence
intervals would you consider for use? Explain your
answer.

(b) Find all four bootstrap confidence intervals.
How do the intervals compare? Briefly explain the
reasons for any differences. In particular, what
kind of errors would you make in estimating the
mean repair time for all CLEC customers by using
a t interval or percentile interval instead of a tilting
or BCa interval?

16.43 Bootstrap confidence intervals for the
difference in average repair times. Example
16.6 (page 16-17) considers the mean difference
between repair times for Verizon (ILEC) customers
and customers of competing carriers (CLECs). The
bootstrap distribution is non-Normal with strong
left-skewness, so that any t confidence interval
is inappropriate. Give the BCa 95% confidence
interval for the mean difference in service times
for all customers. In practical terms, what kind
of error would you make by using a t interval or
percentile interval instead of a BCa interval?

16.44 The correlation between field and lab
measurements. Figure 2.3 (page 90) is a
scatterplot of field versus laboratory measurements
of the depths of 100 defects in the Trans-Alaska Oil
Pipeline. The correlation is r = 0.944. Bootstrap
the correlation for these data. (The data are in the
file ex16-044.)

(a) Describe the shape and bias of the bootstrap
distribution. Do the simpler bootstrap confidence
intervals (t and percentile) appear to be justified?

(b) Find all four bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make
a graphical comparison by drawing a vertical line
at the original correlation r and displaying the four
intervals horizontally, one above the other. Discuss
what you see. Does it still appear that the simpler
intervals are justified? What confidence interval
would you include in a report comparing field and
laboratory measurements?

16.45 The correlation between Treasury bills and
common stock returns. Figure 2.7 (page 96)
shows a very weak relationship between returns
on Treasury bills and returns on common stocks.
The correlation is r = −0.113. We wonder if this is
significantly different from 0. To find out, bootstrap
the correlation. (The data are in the file ex16-045.)

(a) Describe the shape and bias of the bootstrap
distribution. It appears that even simple bootstrap
inference (t and percentile confidence intervals) is
justified. Explain why.

(b) Give the BCa and bootstrap percentile 95%
confidence intervals for the population correlation.
Do they (as expected) agree closely? Do these
intervals provide significant evidence at the 5%
level that the population correlation is not 0?

16.46 C
H

ALLENG
E Bootstrap distribution for the slope β1.

Describe carefully how to resample from
data on an explanatory variable x and a response
variable y to create a bootstrap distribution for
the slope b1 of the least-squares regression line.
(Software such as S-PLUS automates resampling
methods for regression inference.)

16.47 Predicting salary. Table 16.2 gives data on a
sample of 50 baseball players.

(a) Find the least-squares regression line for
predicting salary from batting average.

(b) Bootstrap the regression line and give a 95%
confidence interval for the slope of the population
regression line.

(c) In the discussion after Example 16.10 we found
bootstrap confidence intervals for the correlation
between salary and batting average. Does your
interval for the slope of the population line agree
with our previous conclusion that there may be
no relation between salary and batting average?
Explain.

16.48 C
H

ALLENG
E Predicting field measurements. Continue

your study of field measurements versus
laboratory measurements of defects in the Trans-
Alaska Oil Pipeline, begun in Exercise 16.44, by
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regressing field measurement result on laboratory
measurement result.

(a) Request a plot of the residuals against the
explanatory variable and a Normal quantile plot
of the residuals. These plots suggest that inference
based on the usual simple linear regression model
(Chapter 10, page 564) may be inaccurate. Why?

(b) Examine the bootstrap distribution of
the slope b1 of the least-squares regression
line. The distribution shows some departures
from Normality. In what way is the bootstrap
distribution non-Normal? What is the bootstrap
estimate of bias? Based on what you see, would you
consider use of bootstrap t or bootstrap percentile
intervals?

(c) Give the BCa 95% confidence interval for the
slope β1 of the population regression line. Compare
this with the standard 95% confidence interval
based on Normality, the bootstrap t interval, and
the bootstrap percentile interval. Using the BCa
interval as a standard, which of the other intervals
are adequately accurate for practical use?

16.49 C
H

ALLENG
E Predicting stock returns. Continue your

study of historical returns on Treasury bills
and common stocks, begun in Exercise 16.45, by
regressing stock returns on T-bill returns.

(a) Request a plot of the residuals against the
explanatory variable and a Normal quantile plot

of the residuals. The residuals are somewhat non-
Normal. In what way? It is hard to predict the
accuracy of the usual t confidence interval for the
slope β1 of the population regression line.

(b) Examine the shape and bias of the bootstrap
distribution of the slope b1 of the least-squares line.
The distribution suggests that even the bootstrap t
interval will be accurate. Why?

(c) Give the standard t confidence interval for
β1 and also the BCa, bootstrap t, and bootstrap
percentile 95% confidence intervals. What do you
conclude about the accuracy of the two t intervals?
Do the data provide evidence at the 5% level that
the population slope β1 is not 0?

16.50 The effect of outliers. We know that outliers
can strongly influence statistics such as the mean
and the least-squares line. Example 7.7 (page 428)
describes a matched pairs study of disruptive
behavior by dementia patients. The differences
in Table 7.2 show several low values that may be
considered outliers.

(a) Bootstrap the mean of the differences with
and without the three low values. How do these
values influence the shape and bias of the bootstrap
distribution?

(b) Give the BCa or tilting confidence interval
from both bootstrap distributions. Discuss the
differences.

16.5 Significance Testing Using
Permutation Tests
Significance tests tell us whether an observed effect, such as a difference be-

LOOK BACK
tests of significance,
page 372

tween two means or a correlation between two variables, could reasonably oc-
cur “just by chance” in selecting a random sample. If not, we have evidence that
the effect observed in the sample reflects an effect that is present in the popu-
lation. The reasoning of tests goes like this:

1. Choose a statistic that measures the effect you are looking for.

2. Construct the sampling distribution that this statistic would have if the ef-
fect were not present in the population.

3. Locate the observed statistic in this distribution. A value in the main body of
the distribution could easily occur just by chance. A value in the tail would
rarely occur by chance and so is evidence that something other than chance
is operating.

The statement that the effect we seek is not present in the population is the
null hypothesis, H0. Assuming the null hypothesis were true, the probability

LOOK BACK
null hypothesis,
page 375 that we would observe a statistic value as extreme or more extreme than the
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one we did observe is the P-value. Figure 16.19 illustrates the idea of a P-value.
LOOK BACK

P-value, page 377
Small P-values are evidence against the null hypothesis and in favor of a real
effect in the population. The reasoning of statistical tests is indirect and a bit
subtle but is by now familiar. Tests based on resampling don’t change this rea-
soning. They find P-values by resampling calculations rather than from formu-
las and so can be used in settings where traditional tests don’t apply.

Sampling
distribution

when H0 is true
P-value

Observed statistic

FIGURE 16.19 The P-value of a
statistical test is found from the
sampling distribution the statistic
would have if the null hypothesis
were true. It is the probability of
a result at least as extreme as the
value we actually observed.

Because P-values are calculated acting as if the null hypothesis were true, we
cannot resample from the observed sample as we did earlier. In the absence of
bias, resampling from the original sample creates a bootstrap distribution cen-
tered at the observed value of the statistic. If the null hypothesis is in fact not
true, this value may be far from the parameter value stated by the null hypoth-
esis. We must estimate what the sampling distribution of the statistic would be
if the null hypothesis were true. That is, we must obey the following rule.

RESAMPLING FOR SIGNIFICANCE TESTS

To estimate the P-value for a test of significance, estimate the sampling
distribution of the test statistic when the null hypothesis is true by re-
sampling in a manner that is consistent with the null hypothesis.
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E 16.11 Directed reading activities. Do new “directed reading activities”
improve the reading ability of elementary school students, as measured by
their Degree of Reading Power (DRP) scores? A study assigns third-grade stu-
dents at random to either the new method (treatment group, 21 students) or
traditional teaching methods (control group, 23 students). The DRP scores
at the end of the study appear in Table 16.3.12 In Example 7.14 (page 451) we
applied the two-sample t test to these data.

To apply resampling, we will start with the difference between the sample
means as a measure of the effect of the new activities:

statistic = xtreatment − xcontrol
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TABLE 16.3

DRP scores for third-graders

Treatment group Control group

24 61 59 46 43 53 42 33 46 37 62 20
43 44 52 43 57 49 43 41 10 42 53 48
58 67 62 57 56 33 55 19 17 55 37 85
71 49 54 26 54 60 28 42

•

The null hypothesis H0 for the resampling test is that the teaching method has
no effect on the distribution of DRP scores. If H0 is true, the DRP scores in
Table 16.3 do not depend on the teaching method. Each student has a DRP
score that describes that child and is the same no matter which group the
child is assigned to. The observed difference in group means just reflects the
accident of random assignment to the two groups.

Now we can see how to resample in a way that is consistent with the null
hypothesis: imitate many repetitions of the random assignment of students
to treatment and control groups, with each student always keeping his or her
DRP score unchanged. Because resampling in this way scrambles the assign-
ment of students to groups, tests based on resampling are called permutation
tests, from the mathematical name for scrambling a collection of things.

permutation test

Here is an outline of the permutation test procedure for comparing the
mean DRP scores in Example 16.11:

• Choose 21 of the 44 students at random to be the treatment group; the other
23 are the control group. This is an ordinary SRS, chosen without replace-
ment. It is called a permutation resample.permutation resample

• Calculate the mean DRP score in each group, using the students’ DRP scores
in Table 16.3. The difference between these means is our statistic.

• Repeat this resampling and calculation of the statistic hundreds of times. The
distribution of the statistic from these resamples estimates the sampling dis-
tribution under the condition that H0 is true. It is called a permutation dis-permutation distribution
tribution.

• Consider the value of the statistic actually observed in the study,

xtreatment − xcontrol = 51.476 − 41.522 = 9.954

Locate this value on the permutation distribution to get the P-value.

Figure 16.20 illustrates permutation resampling on a small scale. The top
box shows the results of a study with four subjects in the treatment group and
two subjects in the control group. A permutation resample chooses an SRS of
four of the six subjects to form the treatment group. The remaining two are
the control group. The results of three permutation resamples appear below
the original results, along with the statistic (difference in group means) for
each.
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24, 61   |   42, 33, 46, 37
x1 – x2 = 42.5 – 39.5 = 3.0

33, 61   |   24, 42, 46, 37
x1 – x2 = 47 – 37.25 = 9.75

37, 42   |   24, 61, 33, 46
x1 – x2 = 39.5 – 41 = –1.5

33, 46   |   24, 61, 42, 37
x1 – x2 = 39.5 – 41 = –1.5

FIGURE 16.20 The idea of permutation resampling. The top box shows the outcomes of
a study with four subjects in one group and two in the other. The boxes below show three
permutation resamples. The values of the statistic for many such resamples form the
permutation distribution.
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E 16.12 Permutation test for the DRP study. Figure 16.21 shows the per-
mutation distribution of the difference of means based on 999 permutation
resamples from the DRP data in Table 16.3. This is a resampling estimate of
the sampling distribution of the statistic when the null hypothesis H0 is true.
As H0 suggests, the distribution is centered at 0 (no effect). The solid vertical
line in the figure marks the location of the statistic for the original sample,
9.954. Use the permutation distribution exactly as if it were the sampling dis-
tribution: the P-value is the probability that the statistic takes a value at least
as extreme as 9.954 in the direction given by the alternative hypothesis.

We seek evidence that the treatment increases DRP scores, so the alter-
native hypothesis is that the distribution of the statistic xtreatment − xcontrol is
centered not at 0 but at some positive value. Large values of the statistic are
evidence against the null hypothesis in favor of this one-sided alternative. The
permutation test P-value is the proportion of the 999 resamples that give a
result at least as great as 9.954. A look at the resampling results finds that 14
of the 999 resamples gave a value 9.954 or larger, so the estimated P-value is
14/999, or 0.014.

–15 –5–10 0 5 10 15

P-value

Observed
Mean

FIGURE 16.21 The
permutation distribution of the
statistic xtreatment − xcontrol based
on the DRP scores of 44 students.
The dashed line marks the mean
of the permutation distribution:
it is very close to zero, the value
specified by the null hypothesis.
The solid vertical line marks the
observed difference in means,
9.954. Its location in the right tail
shows that a value this large is
unlikely to occur when the null
hypothesis is true.
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We, however, have one last refinement. In Chapter 8 we discussed an ad-
justment to the population proportion confidence interval that improves its
accuracy. This involved adding two successes and two failures to the sample.
It turns out that we can similarly improve the estimate of the P-value by
adding one sample result more extreme than the observed statistic. The final
permutation test estimate of the P-value is

14 + 1
999 + 1

= 15
1000

= 0.015

(This is why we used 999, rather than 1000, resamples: at this last step we can
divide by 1000 rather than 1001.) The data give good evidence that the new
method beats the standard method.

LOOK BACK
plus four confidence
interval, page 491

Figure 16.21 shows that the permutation distribution has a roughly Nor-
mal shape. Because the permutation distribution approximates the sampling
distribution, we now know that the sampling distribution is close to Normal.
When the sampling distribution is close to Normal, we can safely apply the
usual two-sample t test. The t test in Example 7.14 gives P = 0.013, very close
to the P-value from the permutation test.

Using software
In principle, you can program almost any statistical software to do a permu-
tation test. It is more convenient to use software that automates the process
of resampling, calculating the statistic, forming the permutation distribution,
and finding the P-value. The menus in S-PLUS allow you to request permuta-
tion tests along with standard tests whenever they make sense. The permuta-
tion distribution in Figure 16.21 is one output. Another is this summary of the
test results:

Number of Replications: 999

Summary Statistics:
Observed Mean SE alternative p.value

score 9.954 0.07153 4.421 greater 0.015

By giving “greater” as the alternative hypothesis, the output makes it clear that
0.015 is the one-sided P-value.

Permutation tests in practice
Permutation tests versus t tests. We have analyzed the data in Table 16.3
both by the two-sample t test (in Chapter 7) and by a permutation test. Com-
paring the two approaches brings out some general points about permutation
tests versus traditional formula-based tests.

• The hypotheses for the t test are stated in terms of the two population means,

H0: μtreatment − μcontrol = 0

Ha: μtreatment − μcontrol > 0
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The permutation test hypotheses are more general. The null hypothesis is
“same distribution of scores in both groups,” and the one-sided alternative
is “scores in the treatment group are systematically higher.” These more gen-
eral hypotheses imply the t hypotheses if we are interested in mean scores
and the two distributions have the same shape.

• The plug-in principle says that the difference in sample means estimates the
difference in population means. The t statistic starts with this difference. We
used the same statistic in the permutation test, but that was a choice: we
could use the difference in 25% trimmed means or any other statistic that
measures the effect of treatment versus control.

• The t test statistic is based on standardizing the difference in means in a
clever way to get a statistic that has a t distribution when H0 is true. The
permutation test works directly with the difference in means (or some other
statistic) and estimates the sampling distribution by resampling. No formu-
las are needed.

• The t test gives accurate P-values if the sampling distribution of the differ-
ence in means is at least roughly Normal. The permutation test gives accurate
P-values even when the sampling distribution is not close to Normal.

The permutation test is useful even if we plan to use the two-sample t test.
Rather than relying on Normal quantile plots of the two samples and the cen-
tral limit theorem, we can directly check the Normality of the sampling distri-
bution by looking at the permutation distribution. Permutation tests provide a
“gold standard” for assessing two-sample t tests. If the two P-values differ con-
siderably, it usually indicates that the conditions for the two-sample t don’t hold
for these data. Because permutation tests give accurate P-values even when the
sampling distribution is skewed, they are often used when accuracy is very im-
portant. Here is an example.
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E 16.13 Permutation test of repair times. In Example 16.6, we looked
at the difference in means between repair times for 1664 Verizon (ILEC)
customers and 23 customers of competing companies (CLECs). Figure 16.8
(page 16-18) shows both distributions. Penalties are assessed if a significance
test concludes at the 1% significance level that CLEC customers are receiving
inferior service. The alternative hypothesis is one-sided because the Public
Utilities Commission wants to know if CLEC customers are disadvantaged.

Because the distributions are strongly skewed and the sample sizes are
very different, two-sample t tests are inaccurate. An inaccurate testing pro-
cedure might declare 3% of tests significant at the 1% level when in fact the
two groups of customers are treated identically. Errors like this would cost
Verizon substantial sums of money.

Verizon performs permutation tests with 500,000 resamples for high ac-
curacy, using custom software based on S-PLUS. Depending on the prefer-
ences of each state’s regulators, one of three statistics is chosen: the differ-
ence in means, x1 − x2; the pooled-variance t statistic; or a modified t statistic
in which only the standard deviation of the larger group is used to determine
the standard error. The last statistic prevents the large variation in the small
group from inflating the standard error.
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To perform a permutation test, we randomly regroup the total set of repair
times into two groups that are the same sizes as the two original samples. This
is consistent with the null hypothesis that CLEC versus ILEC has no effect on
repair time. Each repair time appears once in the data in each resample, but
some repair times from the ILEC group move to CLEC, and vice versa. We
calculate the test statistic for each resample and create its permutation dis-
tribution. The P-value is the proportion of the resamples with statistics that
exceed the observed statistic.

Here are the P-values for the three tests on the Verizon data, using 500,000
permutations. The corresponding t test P-values, obtained by comparing the t
statistic with t critical values, are shown for comparison.

Test statistic t test P-value Permutation test P-value

x1 − x2 0.0183
Pooled t statistic 0.0045 0.0183
Modified t statistic 0.0044 0.0195

The t test results are off by a factor of more than 4 because they do not take
skewness into account. The t test suggests that the differences are significant at
the 1% level, but the more accurate P-values from the permutation test indicate
otherwise. Figure 16.22 shows the permutation distribution of the first statistic,
the difference in sample means. The strong skewness implies that t tests will be
inaccurate.

–15 –10 –5 0 5 7

Observed
Mean

P-value

FIGURE 16.22 The
permutation distribution of the
difference in means x1 − x2 for
the Verizon repair time data.

If you read Chapter 15, on nonparametric tests, you will find there permu-
tation tests compared with rank tests and tests based on Normal distributions.

Data from an entire population. A subtle difference between confidence in-
tervals and significance tests is that confidence intervals require the distinction
between sample and population, but tests do not. If we have data on an entire
population—say, all employees of a large corporation—we don’t need a confi-
dence interval to estimate the difference between the mean salaries of male and
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female employees. We can calculate the means for all men and for all women
and get an exact answer. But it still makes sense to ask, “Is the difference in
means so large that it would rarely occur just by chance?” A test and its P-value
answer that question.

Permutation tests are a convenient way to answer such questions. In carry-
ing out the test we pay no attention to whether the data are a sample or an entire
population. The resampling assigns the full set of observed salaries at random
to men and women and builds a permutation distribution from repeated ran-
dom assignments. We can then see if the observed difference in mean salaries
is so large that it would rarely occur if gender did not matter.

When are permutation tests valid? The two-sample t test starts from the
condition that the sampling distribution of x1 − x2 is Normal. This is the case
if both populations have Normal distributions, and it is approximately true for
large samples from non-Normal populations because of the central limit theo-
rem. The central limit theorem helps explain the robustness of the two-sample t
test. The test works well when both populations are symmetric, especially when
the two sample sizes are similar.

LOOK BACK
robustness of
two-sample
procedures, page 456 The permutation test completely removes the Normality condition. How-

ever, resampling in a way that moves observations between the two groups
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AUTION ! requires that the two populations are identical when the null hypothesis is true—
not only are their means the same but so are their spreads and shapes. Our pre-
ferred version of the two-sample t allows different standard deviations in the
two groups, so the shapes are both Normal but need not have the same spread.

In Example 16.13, the distributions are strongly skewed, ruling out the t test.
The permutation test is valid if the repair time distributions for Verizon cus-
tomers and CLEC customers have the same shape, so that they are identical un-
der the null hypothesis that the centers (the means) are the same. Fortunately,
the permutation test is robust. That is, it gives accurate P-values when the two
population distributions have somewhat different shapes—say, when they have
slightly different standard deviations.

Sources of variation. Just as in the case of bootstrap confidence intervals,
permutation tests are subject to two sources of random variability: the original
sample is chosen at random from the population, and the resamples are chosen
at random from the sample. Again as in the case of the bootstrap, the added
variation due to resampling is usually small and can be made as small as we
like by increasing the number of resamples. For example, Verizon uses 500,000
resamples.

For most purposes, 999 resamples are sufficient. If stakes are high or
P-values are near a critical value (for example, near 0.01 in the Verizon case),
increase the number of resamples. Here is a helpful guideline: If a one-
sided test has P-value P, the standard deviation of this value is approximately√

P(1 − P)/B, where B is the number of resamples. You can choose B to obtain
a desired level of accuracy.

USE YOUR KNOWLEDGE
16.51 Is use of a permutation test valid? Suppose a professor wants to

compare the effectiveness of two different instruction methods. By
design, one method is more team oriented, and so he expects the vari-
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ability in individual tests scores for this method to be smaller. Is a
permutation test to compare the mean individual scores of the two
methods valid in this case? Explain.

16.52 Declaring significance. Suppose a one-sided permutation test based
on 200 permutation resamples resulted in a P-value of 0.04. What is
the approximate standard deviation of this value? Would you feel
comfortable declaring the result significant at the 5% level? Explain.

Permutation tests in other settings
The bootstrap procedure can replace many different formula-based confidence
intervals, provided that we resample in a way that matches the setting. Permu-
tation testing is also a general method that we can adapt to various settings.

GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without replacement
in a way that is consistent with the null hypothesis of the test and with
the study design. Construct the permutation distribution of the statistic
from its values in a large number of resamples.

3. Find the P-value by locating the original statistic on the permutation
distribution.

Permutation test for matched pairs. The key step in the general procedure
for permutation tests is to form permutation resamples in a way that is consis-
tent with the study design and with the null hypothesis. Our examples to this
point have concerned two-sample settings. How must we modify our procedure
for a matched pairs design?
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E 16.14 Permutation test for full-moon study. Can the full moon influ-
ence behavior? A study observed 15 nursing-home patients with dementia.
The number of incidents of aggressive behavior was recorded each day for
12 weeks. Call a day a “moon day” if it is the day of a full moon or the day be-
fore or after a full moon. Table 16.4 gives the average number of aggressive
incidents for moon days and other days for each subject.13 These are matched
pairs data. In Example 7.7, the matched pairs t test found evidence that the
mean number of aggressive incidents is higher on moon days (t = 6.45, df =
14, P < 0.001). The data show some signs of non-Normality. We want to apply
a permutation test.

The null hypothesis says that the full moon has no effect on behavior. If
this is true, the two entries for each patient in Table 16.4 are two measure-
ments of aggressive behavior made under the same conditions. There is no
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TABLE 16.4

Aggressive behaviors of dementia patients

Patient Moon days Other days Patient Moon days Other days

1 3.33 0.27 9 6.00 1.59
2 3.67 0.59 10 4.33 0.60
3 2.67 0.32 11 3.33 0.65
4 3.33 0.19 12 0.67 0.69
5 3.33 1.26 13 1.33 1.26
6 3.67 0.11 14 0.33 0.23
7 4.67 0.30 15 2.00 0.38
8 2.67 0.40

•

distinction between “moon days” and “other days.” Resampling in a way con-
sistent with this null hypothesis randomly assigns one of each patient’s two
scores to “moon” and the other to “other.” We don’t mix results for different
subjects, because the original data are paired.

The permutation test (like the matched pairs t test) uses the difference in
means xmoon − xother. Figure 16.23 shows the permutation distribution of this
statistic from 9999 resamples. None of these resamples produces a difference
as large as the observed difference, xmoon − xother = 2.433. The estimated one-
sided P-value is therefore

P = 0 + 1
9999 + 1

= 1
10,000

= 0.0001

There is strong evidence that aggressive behavior is more common on moon
days.

–2.5

Observed
Mean

Difference of means

–0.5–1.0–1.5–2.0 0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 16.23 The
permutation distribution for the
mean difference (moon days
versus other days) from 9999
paired resamples from the data
in Table 16.4, for Example 16.14.
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The permutation distribution in Figure 16.23 is close to Normal, as a Nor-
mal quantile plot confirms. The paired sample t test is therefore reliable and
agrees with the permutation test that the P-value is very small.

Permutation test for the significance of a relationship. Permutation test-
ing can be used to test the significance of a relationship between two variables.
For example, in Example 16.10 we looked at the relationship between baseball
players’ batting averages and salaries.

The null hypothesis is that there is no relationship. In that case, salaries are
assigned to players for reasons that have nothing to do with batting averages.
We can resample in a way consistent with the null hypothesis by permuting the
observed salaries among the players at random.

Take the correlation as the test statistic. For every resample, calculate the
correlation between the batting averages (in their original order) and salaries
(in the reshuffled order). The P-value is the proportion of the resamples with
correlation larger than the original correlation.

When can we use permutation tests? We can use a permutation test only
when we can see how to resample in a way that is consistent with the study
design and with the null hypothesis. We now know how to do this for the fol-
lowing types of problems:

• Two-sample problems when the null hypothesis says that the two popula-
tions are identical. We may wish to compare population means, proportions,
standard deviations, or other statistics. You may recall from Section 7.3 that
traditional tests for comparing population standard deviations work very
poorly. Permutation tests are a much better choice.

• Matched pairs designs when the null hypothesis says that there are only
random differences within pairs. A variety of comparisons is again possible.

• Relationships between two quantitative variables when the null hypothe-
sis says that the variables are not related. The correlation is the most common
measure of association, but not the only one.

These settings share the characteristic that the null hypothesis specifies a
simple situation such as two identical populations or two unrelated variables.
We can see how to resample in a way that matches these situations. Permu-
tation tests can’t be used for testing hypotheses about a single population, com-
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AUTION ! paring populations that differ even under the null hypothesis, or testing general
relationships. In these settings, we don’t know how to resample in a way that
matches the null hypothesis. Researchers are developing resampling methods
for these and other settings, so stay tuned.

When we can’t do a permutation test, we can often calculate a bootstrap con-
fidence interval instead. If the confidence interval fails to include the null hy-
pothesis value, then we reject H0 at the corresponding significance level. This
is not as accurate as doing a permutation test, but a confidence interval esti-
mates the size of an effect as well as giving some information about its statis-
tical significance. Even when a test is possible, it is often helpful to report a
confidence interval along with the test result. Confidence intervals don’t assume
that a null hypothesis is true, so we use bootstrap resampling with replacement
rather than permutation resampling without replacement.
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SECTION 16.5 Summary

Permutation tests are significance tests based on permutation resamples
drawn at random from the original data. Permutation resamples are drawn
without replacement, in contrast to bootstrap samples, which are drawn
with replacement.

Permutation resamples must be drawn in a way that is consistent with the null
hypothesis and with the study design. In a two-sample design, the null hy-
pothesis says that the two populations are identical. Resampling randomly re-
assigns observations to the two groups. In a matched pairs design, randomly
permute the two observations within each pair separately. To test the hypothe-
sis of no relationship between two variables, randomly reassign values of one
of the two variables.

The permutation distribution of a suitable statistic is formed by the values
of the statistic in a large number of resamples. Find the P-value of the test by
locating the original value of the statistic on the permutation distribution.

When they can be used, permutation tests have great advantages. They do not
require specific population shapes such as Normality. They apply to a variety
of statistics, not just to statistics that have a simple distribution under the null
hypothesis. They can give very accurate P-values, regardless of the shape and
size of the population (if enough permutations are used).

It is often useful to give a confidence interval along with a test. To create a confi-
dence interval, we no longer assume the null hypothesis is true, so we use boot-
strap resampling rather than permutation resampling.

SECTION 16.5 Exercises
For Exercises 16.51 and 16.52, see pages 16-48 and 16-49.

The number of resamples on which a permutation test is
based determines the number of decimal places and
accuracy in the resulting P-value. Tests based on 999
resamples give P-values to three places (multiples of 0.001),
with a margin of error 2

√
P(1 − P)/999 equal to 0.014 when

the true one-sided P-value is 0.05. If high accuracy is needed
or your computer is sufficiently fast, you may choose to use
9999 or more resamples.

16.53 A small-sample permutation test. To illustrate
the process, let’s perform a permutation test by
hand for a small random subset of the DRP data
(Example 16.12). Here are the data:

Treatment group 57 53
Control group 19 37 41 42

(a) Calculate the difference in means
xtreatment − xcontrol between the two groups. This
is the observed value of the statistic.

(b) Resample: Start with the 6 scores and choose
an SRS of 2 scores to form the treatment group for

the first resample. You can do this by labeling the
scores 1 to 6 and using consecutive random digits
from Table B or by rolling a die to choose from 1 to
6 at random. Using either method, be sure to skip
repeated digits. A resample is an ordinary SRS,
without replacement. The remaining 4 scores are
the control group. What is the difference in group
means for this resample?

(c) Repeat step (b) 20 times to get 20 resamples
and 20 values of the statistic. Make a histogram
of the distribution of these 20 values. This is the
permutation distribution for your resamples.

(d) What proportion of the 20 statistic values were
equal to or greater than the original value in part
(a)? You have just estimated the one-sided P-value
for the original 6 observations.

(e) For this small data set, there are only 16
possible permutations of the data. As a result,
we can calculate the exact P-value by counting
the number of permutations with a statistic value
greater than or equal to the original value and then
dividing by 16. What is the exact P-value here?
How close was your estimate?
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16.54 Permutation test of real estate prices. Table 16.1
contains the selling prices for a random sample of
50 Seattle real estate transactions in 2002. Table
16.5 contains a similar random sample of sales in
2001. Test whether the means of the two random
samples of the 2001 and 2002 real estate sales data
are significantly different.

TABLE 16.5

Selling prices for an SRS of 50 Seattle real estate
sales in 2001 ($1000s)

419 55.268 65 210 510.728 212.2
152.720 266.6 69.427 125 191 451
469 310 325 50 675 140
105.5 285 320 305 255 95.179
346 199 450 280 205.5 135
190 452.5 335 455 291.905 239.9
369.95 569 481 475 495 195
237.5 143 218.95 239 710 172
228.5 270

(a) State the null and alternative hypotheses.

(b) Perform a two-sample t test. What is the
P-value?

(c) Perform a permutation test on the difference
in means. What is the P-value? Compare it with
the P-value you found in part (b). What do you
conclude based on the tests?

(d) Find a bootstrap BCa 95% confidence interval
for the difference in means. How is the interval
related to your conclusion in (c)?

16.55 Comparing repair times in hours. Verizon uses
permutation testing for hundreds of comparisons,
such as between different time periods, between
different locations, and so on. Here is a sample
from another Verizon data set, containing repair
times in hours for Verizon (ILEC) and CLEC
customers.

ILEC

1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1
2 2 1 1 1 1 2 3 1 1 1 1 2 3 1 1
1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4 1 1 1 1
2 5 1 1 1 1 2 5 1 1 1 1 2 6 1 1
1 1 2 8 1 1 1 1 2 15 1 1 1 2 2

CLEC

1 1 5 5 5 1 5 5 5 5

(a) Choose and make data displays. Describe the
shapes of the samples and how they differ.

(b) Perform a t test to compare the population
mean repair times. Give hypotheses, the test
statistic, and the P-value.

(c) Perform a permutation test for the same
hypotheses using the pooled-variance t statistic.
Why do the two P-values differ?

(d) What does the permutation test P-value tell
you?

16.56 Standard deviation of the estimated P-value.
The estimated P-value for the DRP study (Example
16.12) based on 999 resamples is P = 0.015.
For the Verizon study (Example 16.13) the
estimated P-value for the test based on x1 − x2

is P = 0.0183 based on 500,000 resamples. What
is the approximate standard deviation of each
of these estimated P-values? (Use each P as an
estimate of the unknown true P-value p.)

16.57 C
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E When is a permutation test valid?

You want to test the equality of the means
of two populations. Sketch density curves for two
populations for which

(a) a permutation test is valid but a t test is not.

(b) both permutation and t tests are valid.

(c) a t test is valid but a permutation test is not.

Exercises 16.58 to 16.72 concern permutation tests for
hypotheses stated in terms of a variety of parameters. In
some cases, there are no standard formula-based tests for
the hypotheses in question. These exercises illustrate the
flexibility of permutation tests.

16.58 Comparing median sales prices. Because
distributions of real estate prices are typically
strongly skewed, we often prefer the median to
the mean as a measure of center. We would like
to test the null hypothesis that Seattle real estate
sales prices in 2001 and 2002 have equal medians.
Sample data for these years appear in Tables 16.1
and 16.5. Carry out a permutation test for the
difference in medians, find the P-value, and explain
what the P-value tells us.

16.59 Assessment of a summer language institute.
Exercise 7.41 (page 446) gives data on a study of the
effect of a summer language institute on the ability
of high school language teachers to understand
spoken French. This is a matched pairs study, with
scores for 20 teachers at the beginning (pretest)
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and end (posttest) of the institute. We conjecture
that the posttest scores are higher on the average.

(a) Carry out the matched pairs t test. That is, state
hypotheses, calculate the test statistic, and give its
P-value.

(b) Make a Normal quantile plot of the gains:
posttest score − pretest score. The data have a
number of ties and a low outlier. A permutation
test can help check the t test result.

(c) Carry out the permutation test for the
difference in means in matched pairs, using 9999
resamples. The Normal quantile plot shows that
the permutation distribution is reasonably Normal,
but the histogram looks a bit odd. What explains
the appearance of the histogram? What is the
P-value for the permutation test? Do your tests
in here and in part (a) lead to the same practical
conclusion?

16.60 Comparing mpg calculations. Exercise 7.35
(page 444) gives data on a comparison of driver
and computer mpg calculations. This is a matched
pairs study, with mpg values for 20 fill-ups. We
conjecture that the computer is giving higher mpg
values.

(a) Carry out the matched pairs t test. That is, state
hypotheses, calculate the test statistic, and give its
P-value.

(b) A permutation test can help check the t test
result. Carry out the permutation test for the
difference in means in matched pairs, using 9999
resamples. What is the P-value for the permutation
test? Do your tests in here and in part (a) lead to
the same practical conclusion?

16.61 Testing the correlation between Treasury bill
and stock returns. In Exercise 16.45, we assessed
the significance of the correlation between returns
on Treasury bills and common stocks by creating
bootstrap confidence intervals. If a 95% confidence
interval does not cover 0, the observed correlation
is significantly different from 0 at the α = 0.05
level. We would prefer to do a test that gives us a
P-value. Carry out a permutation test and give the
P-value. What do you conclude? Is your conclusion
consistent with your work in Exercise 16.45?

16.62 Testing the correlation between salaries and
batting averages. Table 16.2 contains the salaries
and batting averages of a random sample of 50
Major League Baseball players. Can we conclude
that the correlation between these variables is
greater than 0 in the population of all players?

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the
sample correlation. Report the P-value and draw a
conclusion.

16.63 Comparing average tree diameters. In Exercise
7.105 (page 480), the standard deviations of the tree
diameter for the northern and southern regions
of the tract were compared. The test is unreliable
because it is sensitive to non-Normality of the data.
Perform a permutation test using the F statistic
(ratio of sample variances) as your statistic. What
do you conclude? Are the two tests comparable?

16.64 Comparing serum retinol levels. The formal
medical term for vitamin A in the blood is serum
retinol. Serum retinol has various beneficial effects,
such as protecting against fractures. Medical
researchers working with children in Papua New
Guinea asked whether recent infections reduce
the level of serum retinol. They classified children
as recently infected or not on the basis of other
blood tests, then measured serum retinol. Of the
90 children in the sample, 55 had been recently
infected. Table 16.6 gives the serum retinol levels
for both groups, in micromoles per liter.14

TABLE 16.6

Serum retinol levels in two groups of children

Not infected

0.59 1.08 0.88 0.62 0.46 0.39
1.44 1.04 0.67 0.86 0.90 0.70
0.35 0.99 1.22 1.15 1.13 0.67
0.99 0.35 0.94 1.00 1.02 1.11
0.83 0.35 0.67 0.31 0.58 1.36
1.17 0.35 0.23 0.34 0.49

Infected

0.68 0.56 1.19 0.41 0.84 0.37
0.38 0.34 0.97 1.20 0.35 0.87
0.30 1.15 0.38 0.34 0.33 0.26
0.82 0.81 0.56 1.13 1.90 0.42
0.78 0.68 0.69 1.09 1.06 1.23
0.69 0.57 0.82 0.59 0.24 0.41
0.36 0.36 0.39 0.97 0.40 0.40
0.24 0.67 0.40 0.55 0.67 0.52
0.23 0.33 0.38 0.33 0.31 0.35
0.82

(a) The researchers are interested in the
proportional reduction in serum retinol. Verify
that the mean for infected children is 0.620 and
that the mean for uninfected children is 0.778.
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(b) There is no standard test for the null hypothesis
that the ratio of the population means is 1. We can
do a permutation test on the ratio of sample
means. Carry out a one-sided test and report the
P-value. Briefly describe the center and shape of
the permutation distribution. Why do you expect
the center to be close to 1?

16.65 Methods of resampling. In Exercise 16.64,
we did a permutation test for the hypothesis
“no difference between infected and uninfected
children” using the ratio of mean serum retinol
levels to measure “difference.” We might also want
a bootstrap confidence interval for the ratio of
population means for infected and uninfected
children. Describe carefully how resampling is
done for the permutation test and for the bootstrap,
paying attention to the difference between the two
resampling methods.

16.66 C
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ratio. Here is one conclusion from the data
in Table 16.6, described in Exercise 16.64: “The
mean serum retinol level in uninfected children
was 1.255 times the mean level in the infected
children. A 95% confidence interval for the ratio of
means in the population of all children in Papua
New Guinea is.. . .”

(a) Bootstrap the data and use the BCa method to
complete this conclusion.

(b) Briefly describe the shape and bias of the
bootstrap distribution. Does the bootstrap
percentile interval agree closely with the BCa
interval for these data?

16.67 Permutation test for the ratio of standard
deviations. In Exercise 16.55 we compared
the mean repair times for Verizon (ILEC) and
CLEC customers. We might also wish to compare
the variability of repair times. For the data in
Exercise 16.55, the F statistic for comparing
sample variances is 0.869 and the corresponding
P-value is 0.67. We know that this test is very
sensitive to lack of Normality.

(a) Perform a two-sided permutation test on the
ratio of standard deviations. What is the P-value
and what does it tell you?

(b) What does a comparison of the two P-values
say about the validity of the F test for these data?

16.68 Calcium intake and blood pressure. Does added
calcium intake reduce the blood pressure of black
men? In a randomized comparative double-blind
trial, 10 men were given a calcium supplement for

twelve weeks and 11 others received a placebo.
Whether or not blood pressure dropped was
recorded for each subject. Here are the data:15

Treatment Subjects Successes Proportion

Calcium 10 6 0.60
Placebo 11 4 0.36

Total 21 10 0.48

We want to use these sample data to test equality
of the population proportions of successes. Carry
out a permutation test. Describe the permutation
distribution. The permutation test does not depend
on a “nice” distribution shape. Give the P-value
and report your conclusion.

16.69 Bootstrap confidence interval for the difference
in proportions. We want a 95% confidence interval
for the difference in the proportions of reduced
blood pressure between a population of black men
given calcium and a similar population given a
placebo. Summary data appear in Exercise 16.68.

(a) Give the plus four confidence interval. Because
the sample sizes are both small, we may wish to
use the bootstrap to check this interval.

(b) Bootstrap the sample data. We recommend
tilting confidence intervals for proportions based
on small samples. Other bootstrap intervals may
be inaccurate. Give all four bootstrap confidence
intervals (t, percentile, BCa, tilting). How do the
other three compare with tilting? How does the
tilting interval compare with the plus four interval?

16.70 More on calcium intake and blood pressure.
We prefer measured data to the success/failure
data given in Exercise 16.68. Table 16.7 gives the
actual values of seated systolic blood pressure
for this experiment. Example 7.20 (page 463)
applies the pooled t test (a procedure that we
do not recommend) to these data. Carry out a
permutation test to discover whether the calcium
group had a significantly greater decrease in blood
pressure.

16.71 A bootstrap comparison of variances. Are the
variances of decreases in blood pressure equal in
populations of black men given calcium and given
a placebo? Example 7.22 (page 475) applied the F
test for equality of variances to the data in Table
16.7. This test is unreliable because it is sensitive
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TABLE 16.7

Effect of calcium and placebo on blood pressure

Calcium Group Placebo Group

Begin End Decrease Begin End Decrease

107 100 7 123 124 −1
110 114 −4 109 97 12
123 105 18 112 113 −1
129 112 17 102 105 −3
112 115 −3 98 95 3
111 116 −5 114 119 −5
107 106 1 119 114 5
112 102 10 114 112 2
136 125 11 110 121 −11
102 104 −2 117 118 −1

130 133 −3

to non-Normality in the data. The permutation test
does not suffer from this drawback.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test using the F statistic

(ratio of sample variances) as your statistic. What
do you conclude?

(c) Compare the permutation test P-value with
that in Example 7.22. What do you conclude about
the F test for equality of variances for these data?

16.72 C
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7.39 (page 445) gives these data on a delicate
measurement of total body bone mineral content
made by two operators on the same 8 subjects:16

Subject

Operator 1 2 3 4 5 6 7 8

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304

Do permutation tests give good evidence that
measurements made by the two operators differ
systematically? If so, in what way do they differ?
Do two tests, one that compares centers and one
that compares spreads.

CHAPTER 16 Exercises

16.73 More bootstrap confidence intervals of the
trimmed mean. The bootstrap distribution of
the 25% trimmed mean for the Seattle real estate
sales (Figure 16.7) is not strongly skewed. We
were therefore willing in Examples 16.5 and 16.8
to use the bootstrap t and bootstrap percentile
confidence intervals for the trimmed mean of
the population. Now we can check these against
more accurate intervals. Bootstrap the trimmed
mean and give all of the bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make a
graphical comparison by drawing a vertical line
at the original sample mean x and displaying the
four intervals horizontally, one above the other.
Describe how the intervals compare. Do you still
regard the bootstrap t and percentile intervals as
adequately accurate?

16.74 More on average CO2 emissions. In Exercise
16.5 (page 16-12), you constructed the bootstrap
distribution for the average carbon dioxide (CO2)
emissions. Re-create this distribution here.

(a) Based on the distribution, do you expect a
bootstrap t confidence interval to be reasonable?
Explain.

(b) Construct both the bootstrap t and BCa
confidence intervals.

(c) How do the two intervals compare? Do
you think the t interval is adequately accurate?
Explain.

16.75 Bootstrap confidence interval for the median.
Your software can generate random numbers that
have the uniform distribution on 0 to 1. Figure 4.9
(page 264) shows the density curve. Generate a
sample of 50 observations from this distribution.

(a) What is the population median? Bootstrap
the sample median and describe the bootstrap
distribution.

(b) What is the bootstrap standard error?
Compute a bootstrap t 95% confidence interval.

(c) Find the BCa or tilting 95% confidence
interval. Compare with the interval in (b). Is the
bootstrap t interval reliable here?

16.76 Are female personal trainers, on average,
younger? A fitness center employs 20 personal
trainers. Here are the ages in years of the female
and male personal trainers working at this center:
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Male 25 26 23 32 35 29 30 28 31 32 29
Female 21 23 22 23 20 29 24 19 22

(a) Make a back-to-back stemplot. Do you think
the difference in mean ages will be significant?

(b) A two-sample t test gives P < 0.001 for the null
hypothesis that the mean age of female personal
trainers is equal to the mean age of male personal
trainers. Do a two-sided permutation test to check
the answer.

(c) What do you conclude about using the t test?
What do you conclude about the mean ages of the
trainers?

16.77 Social distress and brain activity. Exercise 2.17
(page 97) describes a study that suggests that the
“pain” caused by social rejection really is pain,
in the sense that it causes activity in brain areas
known to be activated by physical pain. Here are
data for 13 subjects on degree of social distress
and extent of brain activity:17

Social Brain Social Brain
Subject distress activity Subject distress activity

1 1.26 −0.055 8 2.18 0.025
2 1.85 −0.040 9 2.58 0.027
3 1.10 −0.026 10 2.75 0.033
4 2.50 −0.017 11 2.75 0.064
5 2.17 −0.017 12 3.33 0.077
6 2.67 0.017 13 3.65 0.124
7 2.01 0.021

Make a scatterplot of brain activity against social
distress. There is a positive linear association,
with correlation r = 0.878. Is this correlation
significantly greater than 0? Use a permutation
test.

16.78 C
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activity. Use the bootstrap to obtain a
95% confidence interval for the correlation in the
population of all similar subjects from the data in
the previous exercise.

(a) The permutation distribution in the previous
exercise was reasonably Normal, with somewhat
short tails. The bootstrap distribution is very
non-Normal: most resample correlations are not
far from 1, the largest value that a correlation can
have. Explain carefully why the two distributions
differ in shape. Also explain why we might expect
a bootstrap distribution to have this shape when
the observed correlation is r = 0.878.

(b) Choose an appropriate bootstrap confidence
interval for the population correlation and state
your conclusion.

16.79 Comparing 2001 and 2002 real estate prices.
We have compared the selling prices of Seattle
real estate in 2002 (Table 16.1) and 2001 (Table
16.5). Let’s compare 2001 and 2000. Here are the
prices (thousands of dollars) for 20 random sales
in Seattle in the year 2000:

333 126.5 207.5 199.5 1836 360 175 133 1100 203
194.5 140 280 475 185 390 242 276 359 163.95

(a) Plot both the 2000 and the 2001 data. Explain
what conditions needed for a two-sample t test are
violated.

(b) Perform a permutation test to find the P-value
for the difference in means. What do you conclude
about selling prices in 2000 versus 2001?

16.80 The standard deviation of returns on an
investment. In financial theory, the standard
deviation of returns on an investment is used to
describe the risk of the investment. The idea is
that an investment whose returns are stable over
time is less risky than one whose returns vary a
lot. The data file ex16-080 contains the returns (in
percent) on 1129 consecutive days for a portfolio
that weights all U.S. common stocks according to
their market value.18

(a) What is the standard deviation of these
returns?

(b) Bootstrap the standard deviation. What is its
bootstrap standard error?

(c) Find the 95% bootstrap t confidence interval
for the population standard deviation.

(d) Find the 95% tilting or BCa confidence
interval for the standard deviation. Compare the
confidence intervals and give your conclusions
about the appropriateness of the bootstrap t
interval.

16.81 Nurses’ use of latex gloves. Nurses in an inner-
city hospital were unknowingly observed on their
use of latex gloves during procedures for which
glove use is recommended.19 The nurses then
attended a presentation on the importance of
glove use. One month after the presentation, the
same nurses were observed again. Here are the
proportions of procedures for which each nurse
wore gloves:
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Nurse Before After Nurse Before After

1 0.500 0.857 8 0.000 1.000
2 0.500 0.833 9 0.000 0.667
3 1.000 1.000 10 0.167 1.000
4 0.000 1.000 11 0.000 0.750
5 0.000 1.000 12 0.000 1.000
6 0.000 1.000 13 0.000 1.000
7 1.000 1.000 14 1.000 1.000

(a) Why is a one-sided alternative proper here?
Why must matched pairs methods be used?

(b) Do a permutation test for the difference in
means. Does the test indicate that the presentation
was helpful?

16.82 More on nurses’ use of latex gloves. In the
previous exercise, you did a one-sided permutation
test to compare means before and after an
intervention. If you are mainly interested in
whether or not the effect of the intervention is
significant at the 5% level, an alternative approach
is to give a bootstrap confidence interval for
the mean difference within pairs. If zero (no
difference) falls outside the interval, the result is
significant. Do this and report your conclusion.

16.83 C
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Examples 8.9 (page 507) and 8.11 (page
513) examine survey data on binge drinking
among college students. Here are data on the
prevalence of frequent binge drinking among
female and male students:20

Sample Binge
Gender size drinkers

Men 5,348 1,392
Women 8,471 1,748

Total 13,819 3,140

The sample is large, so that traditional inference
should be accurate. Nonetheless, use resampling
methods to obtain

(a) a 95% confidence interval for the proportion
of all students who are frequent binge drinkers.

(b) a test of the research hypothesis that men
are more likely than women to be frequent binge
drinkers.

(c) a 95% confidence interval for the difference
in the proportions of men and of women who are
frequent binge drinkers.

16.84 Readability of magazine advertisements.
Is there a difference in the readability of
advertisements in magazines aimed at people
with varying educational levels? Here are word
counts in randomly selected ads from magazines
aimed at people with high and middle education
levels:21

Education level Word count

High 205 203 229 208 146 230 215 153 205
80 208 89 49 93 46 34 39 88

Medium 191 219 205 57 105 109 82 88 39
94 206 197 68 44 203 139 72 67

(a) Make histograms and Normal quantile plots
for both data sets. Do the distributions appear
approximately Normal? Find the means.

(b) Bootstrap the means of both data sets and find
their bootstrap standard errors.

(c) Make histograms and Normal quantile plots
of the bootstrap distributions. What do the plots
show?

(d) Find the 95% percentile and tilting confidence
intervals for both data sets. Do the intervals for
high and medium education level overlap? What
does this indicate?

(e) Bootstrap the difference in means and find
a 95% percentile confidence interval. Does it
contain 0? What conclusions can you draw from
your confidence intervals?

16.85 More on the readability of advertisements.
The researchers in the study described in the
previous exercise expected higher word counts in
magazines aimed at people with high education
level. Do a permutation test to see if the data
support this expectation. State hypotheses, give a
P-value, and state your conclusions. How do your
conclusions here relate to those from the previous
exercise?

16.86 Assessment of a citizen-police program. The
following table gives the number of burglaries per
month in the Hyde Park neighborhood of Chicago
for a period before and after the commencement
of a citizen-police program:22
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Before

60 44 37 54 59 69 108 89 82 61 47
72 87 60 64 50 79 78 62 72 57 57
61 55 56 62 40 44 38 37 52 59 58
69 73 92 77 75 71 68 102

After

88 44 60 56 70 91 54 60 48 35 49
44 61 68 82 71 50

(a) Plot both sets of data. Are the distributions
skewed or roughly Normal?

(b) Perform a one-sided (which side?) t test on the
data. Is there statistically significant evidence of a
decrease in burglaries after the program began?

(c) Perform a permutation test for the difference
in means, using the same alternative hypothesis
as in part (b). What is the P-value? Is there
a substantial difference between this P-value
and the one in part (b)? Use the shapes of the

distributions to explain why or why not. What do
you conclude from your tests?

(d) Now do a permutation test using the opposite
one-sided alternative hypothesis. Explain what
this is testing, why it is not of interest to us, and
why the P-value is so large.

16.87 More on the assessment of a citizen-police
program. The previous exercise applied
significance tests to the Hyde Park burglary
data. We might also apply confidence intervals.

(a) Bootstrap the difference in mean monthly
burglary counts. Make a histogram and a Normal
quantile plot of the bootstrap distribution and
describe the distribution.

(b) Find the bootstrap standard error, and use it
to create a 95% bootstrap t confidence interval.

(c) Find the 95% percentile confidence interval.
Compare this with the t interval. Does the
comparison suggest that these intervals are
accurate? How do the intervals relate to the
results of the tests in the previous exercise?

CHAPTER 16 Notes

1. S-PLUS is a registered trademark of Insightful Corpo-
ration.

2. Verizon repair time data used with the permission of
Verizon.

3. The origin of this quaint phrase is Rudolph Raspe, The
Singular Adventures of Baron Munchausen, 1786. Here is
the passage, from the edition by John Carswell, Heritage
Press, 1952: “I was still a couple of miles above the clouds
when it broke, and with such violence I fell to the ground
that I found myself stunned, and in a hole nine fathoms un-
der the grass, when I recovered, hardly knowing how to get
out again. Looking down, I observed that I had on a pair
of boots with exceptionally sturdy straps. Grasping them
firmly, I pulled with all my might. Soon I had hoist myself
to the top and stepped out on terra firma without further
ado.”

4. In fact, the bootstrap standard error underestimates
the true standard error. Bootstrap standard errors are gen-
erally too small by a factor of roughly

√
1 − 1/n. This factor

is about 0.95 for n = 10 and 0.98 for n = 25, so we ignore
it in this elementary exposition.

5. T. Bjerkedal, “Acquisition of resistance in guinea pigs
infected with different doses of virulent tubercle bacilli,”
American Journal of Hygiene, 72 (1960), pp. 130–148.

6. Seattle real estate sales data provided by Stan Roe of
the King County Assessor’s Office.

7. The 254 winning numbers and their payoffs are repub-
lished here by permission of the New Jersey State Lottery
Commission.

8. The vehicle is a 2002 Toyota Prius owned by the third
author.

9. From the Forbes Web site, www.forbes.com.

10. The standard advanced introduction to bootstrap
methods is B. Efron and R. Tibshirani, An Introduction
to the Bootstrap, Chapman and Hall, 1993. For tilting in-
tervals, see B. Efron, “Nonparametric standard errors and
confidence intervals” (with discussion), Canadian Journal
of Statistics, 36 (1981), pp. 369–401; and T. J. DiCiccio and
J. P. Romano, “Nonparametric confidence limits by resam-
pling methods and least favourable families,” International
Statistical Review, 58 (1990), pp. 59–76.

11. From www.espn.com, July 2, 2002.

12. This example is adapted from Maribeth C. Schmitt,
“The effects of an elaborated directed reading activity on
the metacomprehension skills of third graders,” PhD disser-
tation, Purdue University, 1987.
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13. These data were collected as part of a larger study of
dementia patients conducted by Nancy Edwards, School
of Nursing, and Alan Beck, School of Veterinary Medicine,
Purdue University.

14. Data provided by Francisco Rosales of the Department
of Nutritional Sciences, Penn State University. See Rosales
et al., “Relation of serum retinol to acute phase proteins
and malarial morbidity in Papua New Guinea children,”
American Journal of Clinical Nutrition, 71 (2000), pp. 1580–
1588.

15. Roseann M. Lyle et al., “Blood pressure and metabolic
effects of calcium supplementation in normotensive white
and black men,” Journal of the American Medical Associa-
tion, 257 (1987), pp. 1772–1776.

16. These data were collected in connection with a bone
health study at Purdue University and were provided by
Linda McCabe.

17. Data from a plot in Naomi I. Eisenberger, Matthew D.
Lieberman, and Kipling D. Williams, “Does rejection hurt?
An fMRI study of social exclusion,” Science, 302 (2003), pp.
290–292.

18. These are daily returns from January 1990 through
part of May 2004 for the CREF Equity Index Fund, which is
a good proxy for all U.S. common stocks. The returns were
calculated from net asset values appearing on the TIAA-
CREF Web site, www.tiaa-cref.org.

19. L. Friedland et al., “Effect of educational program on
compliance with glove use in a pediatric emergency de-
partment,” American Journal of Diseases of Childhood, 146
(1992), 1355–1358.

20. Results of this survey are reported in Henry Wechsler
et al., “Health and behavioral consequences of binge drink-
ing in college,” Journal of the American Medical Association,
272 (1994), pp. 1672–1677.

21. F. K. Shuptrine and D. D. McVicker, “Readability levels
of magazine ads,” Journal of Advertising Research, 21, No.
5 (1981), p. 47.

22. G. V. Glass, V. L. Wilson, and J. M. Gottman, Design
and Analysis of Time Series Experiments, Colorado Associ-
ated University Press, 1975.


