
looking at regression assumptions 1

The simple linear regression model has:

yi = b0 + b1xi + errori = µY |x + errori.
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Figure 1: For each x the y values are
normally distributed around the line.
That is the error terms are normally
distributed with mean 0.
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Figure 2: Error terms are normal –
but the variance is not constant

• The term µY |x is there to emphasize that the model says
the mean of the y values for a given x is modeled by a
line – that depends on x – with slope b1 and intercept
b0.

• The assumptions about the error terms are that they
are a random sample from a normal population with a
mean of 0 and standard deviation σ .

In the following we want to investigate three things:

1. How can we test the assumption that the linear model
is appropriate?

2. How can we test if the errors are normally distributed
and a random sample when we don’t actually have the
errors?

3. How sensitive is the model fitting – finding b̂1 and b̂0 to
outliers?

Linear model assumption

We will use a data set on diamonds from an article at JSE
http://www.amstat.org/publications/jse/v9n2/datasets.

chu.html by Singfat Chu.

> f <- "http://www.math.csi.cuny.edu/verzani/classes/MTH214/Computer/diamonds.txt"

> diamonds <- read.table(f)

This data set has many variables. The ones we are inter-
ested in are for now are carat, price and lnprice.

The price is a worth and carat a measure of size. We
should have that larger diamonds are worth more, so these
two should be positively correlated.

Question 0.1. Are they? Find the correlation between the
two variables. (the function is cor.) You can refer to them
through diamonds$carat and diamonds$price.
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looking at regression assumptions 2

Question 0.2. Now make a scatterplot of the relationship
with price as the response variable and carat as the predic-
tor. Use a command like:

> plot(price ~ carat, data = diamonds)

Mentally draw a trend line.

1. Is it increasing?

2. Is it linear?

3. If not, what kind of curve or shape does your trend line
have.

Question 0.3. You can add a linear regression fit to your
graph with the command

> res <- lm(price ~ carat, data = diamonds)

> abline(res)

Do so. Does this help you answer your last question better?

To assess a relationship as to whether it is linear from a
regression line is pretty easy to do, but to really look to see
if the data has a linear trend, versus some other, one should
remove the trend and then look. The residual plot will do
this. The residual plot looks at the residuals only plotted
against the fitted values – that is the ŷi values that fall on the
line. To make this plot we have:

> plot(fitted(res), resid(res))

Or better still, using one of R’s diagnostic plots for regres-
sion:

> plot(res, which = 1)

[R has several (6) diagnostic plots to test the assumptions
of the model. The value of 1 selects the residuals versus fitted
graphic. The value 2 will make a quantile plot of the residu-
als]
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Question 0.4. Make the last of these plots (using which=1).
The graph should show a dashed line at 0 and a curved line.
The dashed line indicates that the fitted values were stripped
away so on average the residuals are 0. However, the red line
tracks any trend left in the residuals.

1. Does the red line show a non-linear trend in the residu-
als?

Question 0.5. Repeat the above with variable lnprice as a
response and carat as a predictor. The variable lnprice is
the logarithm of the price. Taking the logarithm is a common
practice to turn exponential relationships into linear ones.

1. First make the scatter plot. Does the linear model seem
to fit better?

2. Now make a residual plot. Does the linear model seem
any better now?

Normality assumption

The assumptions about the model trend are that it is linear.
If that is satisfied, one must also check that the assumptions
about the error terms are also satisfied. Recall we assume
that the error terms are:

1. Normally distributed with mean 0 and standard devia-
tion σ .

2. Are independent

The residuals are our surrogate for the error terms which
are unknown as they depend on knowing the true model (bo

and b1, not b̂0 and b̂1).
To check the the residuals are normally distributed we can

make a histogram, quantile-quantile plot or boxplot.
The residuals are given from the model fit by the extractor

function resid.

> x <- resid(res)

> head(x)
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1 2 3 4 5 6

120.6924 328.6924 328.6924 78.6924 343.7036 257.7036

The graphics can then be made with these.

Question 0.6. For the model of price by carat make the
three three plots above for the residuals and discuss. For
example, to find the quantile-quantile plot we have:

> res <- lm(price ~ carat, data = diamonds)

> qqnorm(resid(res))

Do the residuals look normally distributed? Why or why
not? Be specific how each graphic shows this.

Question 0.7. Repeat the above for the model of lnprice
versus carat. Do these residuals look normally distributed?
Why or why not.

The residuals always have mean 0. (Sample mean). This
can be checked:

> mean(resid(res))

[1] -5.064491e-15

which up to rounding error is 0.
However, the residuals may not indicate that the assump-

tion that each error term has the same standard deviation σ .
That is, our model assumes our mean response depends on x,
but the variance of the error does not. The term homoscedas-
ticy applies when it is the case.

Question 0.8. Make a residual plot of the residuals for the
model price by carat. Does it appear that the assumption
on σ is satisfied?

Question 0.9. When the residuals show a violation of the
assumption that σ does not depend on x, a transformation is
often applied to the response variable. The variable lnprice

is the result of taking the log-transform. Make the appropri-
ate graph to check if this transformation is consistent with
the assumption on a value of σ that does not depend on x.
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The issue of independence is also important. Sometimes in
the process of data collection the values collected near each
other may influence the other values. For example, a really
large value may make one extra careful to make sure the next
value is observed properly. As such, this next measurement
is influenced by the previous which means the results are not
independent.

A common graphic to check for this is to plot the residuals
against the lagged residuals. R makes this easy, provided you
use its subscripting to shift the residuals. Here is how.

> res <- lm(price ~ carat, data = diamonds)

> x <- resid(res)

> plot(x[-1] ~ x[-length(x)], main = "Plot of previous, versus next")
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Figure 3: Lag plot (previous versus
next) of the residuals for the price by
carat size. The lack of a pattern
indicates no relationship between
subsequent measurements.

This graph for this data is just scattered since the obser-
vations are independent – that is the previous value does
not influence the next value. It will will sometimes show a
pattern if the observations are not independent (it can be
non-independent in different ways).

Question 0.10. Make the plot above only for the model
of lnprice versus carat. Does it look like the residuals are
independent by this measure?

Question 0.11. Define x values as follows – so that the
values are related – and then make the plot above. Do you
see a pattern?

> x <- sin(1:100)

Influential observations

The estimates for the regression parameters b1 and b0 are
sensitive to outliers. When a point causes a big change in
the slope of regrssion line, we say it is an influential point.
These points are marked by some of the diagnostic plots that
R produces. To see, we look at the model restricted to the
values where D==1.

> diam <- subset(diamonds, subset = D == 1)

> res <- lm(price ~ carat, data = diam)
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We make a scatter plot as follows:

> plot(price ~ carat, data = diam)

> abline(res)
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Figure 4: Scattert plot of price by
carat size for “D” grade diamonds
only.

Question 0.12. Make the residual plot through the following
command:

> plot(res, which = 1)

This graphic marks points which are inluential. What are
their indices? These values give the row names. They are the
8th, 10th and 14th row in the diam data set.

Question 0.13. To investigate how the regression line is
influenced by these extra points, we can remove them from
consideration. To do so, we can create a new data set:

> diam1 <- diam[-c(8, 10), ]

> res.drop <- lm(price ~ carat, data = diam1)

> abline(res.drop, col = "red")

Add the line above to your scatter plot (you can’t close the
scatter plot window or this won’t work). Does it seem like
the slope of the regression line has changed?

Question 0.14. The Cook’s distance for each point is based
on looking at the change between the fitted model for all the
data and the fitted model for the data without that point. If
a point is influential there will be a big change. A diagnostic
plot is produced by

> plot(res, which = 5)

Make this plot. What values are flagged by numbers?
These are influential points
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