Confidence intervals via simulation

A confidence interval describes how we can use a single random sample to make
inference about an unknown population parameter.

1 Large sample confidence intervals

A basic usage is to find an interval for the value of W using X. For large samples we
have the probability that this random interval

(X— 1.96SE(X), X+ 1.965E(X))

contains M is 0.95.

Here SE(X) = S/y/N. The value of 1.96 comes from the value for the probability
0.95.

Let’s see how we might use simulation to find out the probability for different
values of the factor 1.96.

For instance, how often is M in the interval x4 1SE(X)? A simulation can tell.

To simulate, we need to specify a value of . Let’s take u= 0, and use the standard
normal for our population. We take n= 50.

We define a function that we can easily edit:

> sim = function() {

+ res = c()

+ n = 50

+ k=1

+ for (i in 1:500) {

+ x = rnorm(n)

+ xbar = mean(x)

+ SE = sd(x)/sqrt (n)
+ res[i] = ((xbar - k * SE) < 0) & ((xbar + k * SE) > 0)
+ }

+ sum(res) /500

+ }

To call the function, we just use its name:

> sim()

[1] 0.718
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To make changes to the function use the command
> fix(sim)

and use the editor to effect the changes.

The key to this function is the logical expression that returns TRUE if pis in the
random interval X2=kSE and FALSE otherwise. Then sum() turns TRUE into 1, and
FALSE into 0.

1. Run the above simulation with k= 1. Is your answer the same? Similar?
(What does similar mean?)

2. Run the simulation with k= 2. What proportion of the time is the mean within
2 standard errors?

3. There is a relationship between K and the probability that a random interval
chosen this way contains 0:

P(—k<Z<ky=1-a.

When a =0.05, k= 1.96 (about 2). When k=1, a =1—0.68. To exactly solve
for k from a given o is done with qnorm():

> alpha = 0.05
> gnorm(1 - alpha/2)

[1] 1.96

To solve for a from K is done with pnorm()

>k =2
> 2 % (1 - pnorm(k))

[1] 0.0455

For k= 1.96 compare your proportion from a simulation to the proper value of
a. Repeat for k= 1.5.
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2 small sample ClIs

For small n, the same thing can be done, but in this case the normal distribution
isn’t used for the sampling distribution. Let’s see if our simulations show that the
relationship between k and o isn’t quite right anymore.

1. Let n=5, k=1.96. Do a simulation and see if the value simulated for a is
close to 0.05.

2. Repeat with n=3, 10 and 20.

The correct relationship between k and o involves the t-distribution with n—1
degrees of freedom. The qt () and pt () function deliver the differences.
For instance, for a given K, the correct value of o depends on n, and is found with

>k =2
>n =25
>2 % (1 -pt(k, df =n - 1))

[1] 0.1161

For comparison, the reverse is

> alpha = 0.05
>n =25
> qt(1 - alpha/2, df = n - 1)

[1] 2.776

1. Do the simulations for a = 0.05 and n= 3,5,10,20. Find the appropriate k.
Compare the sample proportion with a.

3 Viewing ClIs

Download the function plot.CI() with this command:
> source("http://wiener.math.csi.cuny.edu/st/R/plotCI.R")

This function will produce a graphic showing simulated confidence intervals. The
default is to simulate Cls based on proportions:



Confidence intervals via simulation

> plotCI()

50 95% confidence intervals based on sample proportion

By changing the default arguments, you can plot others. For instance the value
type="mean" we get Cls for X, and if we make family = "exp” we will have an
exponential population (with rate 1.) Does this produce the expected number of Cls
containing 1 (the mean)?

> plotCI(n = 50, type = "mean", family = "exp", mu = 1)

50 95% confidence intervals based on sample mean
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For the defaults of n= 10, look at the following populations (families) to see if
for a = 0.05, the correct proportion of Cls contain the mean.

1. Exponential ("exp",u=1)
2. t with "t" and df=5

3. Uniform with "unif" and p=1/2.



