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The data file tuna.R is a table of data for southern bluefin tuna found at http://www.ccsbt.
org/docs/data.html. It can be read in as follows (cross fingers here)

> f = "http://www.math.csi.cuny.edu/verzani/classes/MTH804/computer/tuna.R"
> tuna = read.table(file=url(f),header = T)

The variable tuna contains estimates for the global catch of southern bluefin tuna. We want to model
the total estimate against time.

A deterministic model used by Myers and Worm (Nature 423, 280-283 (2003)) to model decline of
predatory fish of species i is

Ni(t) = Ni(0)((1−δi)e−rit +δi).

For a single species the subscripts i can be dropped.
Suppose the process has observation uncertainty of the type Nobs,t = Nt +Wt where Wt is assumed to

be normal with mean 0 and unknown variance.

1. Plot the data. Do all the data points appear to be valid? If not, argue that they can be dropped.

2. Write down the negative log likelihood function for the model. Assume, you know N0 from the
graph.

3. Use the method of non-linear least squares to estimate the parameters r and d.

4. Look at the negative log likelihood as a function of σ. Can you minimize this function as a function
of δ, r? What equation do these satisfy at σ̂2?

5. Can you compare the submodel N(0)δ = 20000 to the model δ is in [0,1] using the likelihood ratio
test? What about the AIC criteria.

1 Analysis

First, we can plot the data with this command

> plot(Total ˜ year, data = tuna)

Looking at the plot (not shown) we extract just the years after 1980 with the subset command:

> tuna = subset(tuna, subset = year > 1980, select=c("year","Total"))

The subset() command has the argument subset = which allows a logical condition to select the
rows. The select= argument allows you to choose which columns. So the above assigns to tuna just
the rows when year is 1981 or more, and just the two columns year and Total.

A new plot is done with the same command as before, only now as tuna is reduced the plot will be
different:

plot(Total ˜ year, data = tuna)
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Now, let’s try to fit this data. Previous attempts at fitting the range from 1960 forward failed as the
suggested curve wants to have d < 0 and r close to 0 which essentially means the best fit is a straight line.
Here we do better.

As is typical, we set up some functions. Notice, we subtract 1981 from the year so that time 0 corre-
sponds to the first data point.

> f = function(t,N0,r,d) N0*((1-d)*exp(- r*(t-1981)) + d)

Let’s try to predict good starting values. First, N0 should be the initial amount so we guess that
N0 = 45000 should be a good value. Next N0 · d is the leveling off amount. As this is about 15,000 we
guess that d = 15,000/45,000 = 0.333 so we start with d = 1/3 for roundness. Next, r is the initial
descent. We can just guess a value for r by plotting. Try r = 1 and see it works:

> curve(f(x,N0=45000,r=1,d=1/3), add=T)

The plot declines too quickly, slowing up r by setting r=.1 is a little better as this shows

> curve(f(x,N0=45000,r=.1,d=1/3),add=T)

We now try to fit the data with nls():

> res=nls(Total ˜ f(year,N0,r,d),data=tuna,start=list(N0=45000,r=.1,d=1/3))
> res
Nonlinear regression model

model: Total ˜ f(year, N0, r, d)
data: tuna

N0 r d
4.981e+04 1.968e-01 2.669e-01
residual sum-of-squares: 213219573

> curve(f(x,N0=49810,r=.1968,d=.2669),add=T,col="red")
> AIC(res)
[1] 404.4

It converges now and the curve shows an okay fit.

2 Why did we fit with least squares?

Good question. We have a model that says

N(t) = N(0)
(

(1−δ)e−rt +δ
)

(as a deterministic model) with additive process uncertainty

Nobs(t) = N(t)+Wt

where we assume Wt are iid normals with mean 0 and variance σ2.
As we observe the data, we have a model

Nobs(t) = N(0)
(

(1−δ)e−rt +δ
)

+Wt
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which has negative log likelihood function

− logL(Θ) = − logL(N0, r,δ,σ) = logσ+
1

2σ2 ∑(Nobs(t)− f (t|Θ)2

As in class, if we look for maximum likelihood estimators, then we first differentiate in σ to see that at the
optimal σ, σ̂ we have

σ̂2 =
1
n ∑(Nobs(t)− f (t|Θ)2

Putting this back into the equation, gives

− logL(N0, r,δ, σ̂) =
1
2

log(
1
n ∑(Nobs(t)− f (t|Θ)2)+

n
2

Minimizing this is the same as minimizing the non-linear least squares problem.
That is, the nls() procedure above is finding maximum likelihood estimators for the model.

3 Model selection using AIC, likelihood ratios

From the model we have the following numbers

> AIC(res)
[1] 404.4
> 1/2* log(sum(resid(res)ˆ2)) + length(year)/2
[1] 20.09

The latter being the negative log-likelihood.
To fit the model using d = 1/3 as known, and not a parameter can be done. This is an example to

compare nested models with likelihood.
We need a new function. Note the body of the function is identical to f and we just cut and paste:

> f
function(t,N0,r,d) N0*((1-d)*exp(- r*(t-1981)) + d)
> f.1 = function(t,N0,r) N0*((1-d)*exp(- r*(t-1981)) + d)

This function will find the value of d in the environment. We set it explicitly with

> d = 1/3

Now repeat the fitting above

> res = nls(Total ˜ f.1(year,N0,r),data=tuna,start=list(N0=45000,r=.1))
> res
Nonlinear regression model

model: Total ˜ f.1(year, N0, r)
data: tuna

N0 r
4.759e+04 2.219e-01
residual sum-of-squares: 264918454
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We can compare fits as follows

> plot(Total ˜ year,tuna)
> curve(f(x,N0=49810,r=.1968,d=.2669),add=T,col="red")
> curve(f.1(x,N0=47590,r=.2219),add=T,col="blue")

The two fits are different as expected. The red line fits “better” as measured by sum of squares, but it has
an extra parameter.

We have two ways to compare models here. The AIC comparison gives

> AIC(res)
[1] 407.0

which we compare to the 404.4 from the red line. The lower one wins, so this would select the model
where δ is a parameter.

The log likelihood computes the statistic

2(− log(L(Θ|MA))+− log(L(Θ|MB))

The negative log likelihood for the second fit is found as above with

> 1/2* log(sum(resid(res)ˆ2)) + length(year)/2
[1] 20.20

So the statistic is
2(20.20−20.09) = 0.22

There is 1 extra parameter. Under the null hypothesis assumption that the extra parameter is not needed,
we have the p-value of

P(χ2
1 > 0.22)

which is computed with

> 1 - pchisq(0.22,df=1)
[1] 0.639

Indicating that the extra parameter is not needed by the likelihood ratio test.

4 Multiplicative uncertainty

How would this analysis change if the observed error was modeled in a multiplicative manner:

Nobs(t) = NtWt,

where Wt is log-normal:
Wt = exp(Ztσ−σ2/2)

Now the model would be
Nobs(t) = Wt ·N(0)((1−δ)e−rt +δ).
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We would take logarithms first to get

− logL(Θ) = − logL(N0, r, t,σ) = n logσ+
1

2σ2 ∑(logNobs(t)− f (t|N0, r,δ)+
σ2

2
)2

Notice, we can’t use calculus as before as their is a σ2 inside the sum so the result is not nearly as simple.
We can do a direct optimization though and hope it converges. For this, we use the optim() function.

This expects the function to be a function of a single vector containing the parameters. For instance we
define g() using the previous definition for f

> f
function(t,N0,r,d) N0*((1-d)*exp(- r*(t-1981)) + d)
> g = function(x) {
+ n=length(year)
+ n*log(x[4]) + 1/(2*x[4]ˆ2)*sum((log(Total) -
+ log(f(year,x[1],x[2],x[3])) + x[4]ˆ2/2)ˆ2)
+ }

(The vector x contains the parameters in this order N0, r,δ,σ. For example, x[4]= σ.)
We need good guesses for the initial quantities. We use the ones from before which gave

N0 = 49810, r = .1968,d = .2669

As for σ we note that the variation is on the order of a few percent, so we guess σ should be fairly small,
say around 1.

Now we can try optim() it is called with the initial guesses, then the function name

> attach(tuna) # needed as no data= argument
> optim(c(N0=49810,r=.1968,d=.2669,sigma=1), g)
$par

N0 r d sigma
7.094e+04 2.152e+05 2.929e-01 3.859e-01
... note the warnings ...

The results are returned after the par. Notice a warning which can be viewed with warnings().
Something about NaN’s indicating that something may have given a singularity.

We should check that the values are reasonable. Plotting them gives us

> curve(f(x,N0=70940,r=21520,d=.2929),add=T,col="green")

That r value is a big problem!
Maybe our value of σ is too large. Let’s try σ = .1 and see

> optim(c(N0=49810,r=.1968,d=.2669,sigma=.1), g)$par
N0 r d sigma

5.560e+04 2.707e-01 2.640e-01 1.000e-01
There were 34 warnings (use warnings() to see them)

This gives us the same warning. Looking at the help page for optim we see there are other algorithms.
The one labeled "L-BFGS-B" allows us to put constraints on the values. Trying this first without con-
straints, gives us convergence though:
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> optim(c(N0=49810,r=.1968,d=.2669,sigma=.1), g,method="L-BFGS-B")$par
N0 r d sigma

4.981e+04 2.400e-01 2.926e-01 1.560e-01

Now we can plot to view

> curve(f(x,N0=49810,r=.2400,d=.2926),add=T,col="green")

This gives a reasonable fit.

5 Confidence interval for δ.

The value of δ inidicates how much the stocks are down. In this case,as δ is around .3, we can say that
stocks are down 70% from 1980 levels.

As this is a statistic, it would be nice to understand its sampling variation, or to give a 95% confidence
interval for it.

Oneway to approach that problem is through the likelihood function. This is more math intensive. An
alternate is the bootstrap method. This is more computer intensive. We illustrate this one next.

The basic non-parametric bootstrap method uses the following scheme to find out about the sampling
distribution of θ̂:

• Sample from the data with replacement to form a new sample

• Find the parameter estimates for the new sample. Call this θ̂∗.

• Repeat many times to find the sampling distribution of θ̂∗.

• Under many assumptions, the quantiles of the above simulation of θ̂∗ form confidence intervals for
θ̂.

The mechanics involve the following.

• Sampling with replacement. This is done with the sample() command:

> n = length(tuna$year)
> new.indices = sample(1:n,n, replace=T)
> df = tuna[new.indices,]

The new indices are a sample with replacement from the old indices. As replacement is used, there
may be repeats. These indices are then used to extract the data, storing it above in a variable df.

• Automating the model fitting. We see that sometimes the model fitting dies on us. We can catch
these times with the try() function so that our repeating part doesn’t stop. The format to use is

x = try(something.that.may.fail)
if(inherits(x,"try-error")) what.to.do.if.fail else what.to.do.if.success
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• Looping to repeat. A for() loop will loop over values in a vector. For example for(i in 1:m)
will loop over the values in the vector 1,2, · · · ,m setting i to the value within the loop.

We apply this to the model with additive observation uncertainty. We could use nls() on this model.
We use a function to implement the bootstrap:

"d.boot" <-
function(m=100) {
res = c()
N0=49810;r=.2400;d=.2926;sigma=.156
n = length(tuna$year)
for(i in 1:m) {

new.indices = sample(1:n,n,replace=T)
df = tuna[new.indices,]
res.nls= try(nls(Total ˜ f(year,N0,r,d),data = df,

start=c(N0=N0,r=r,d=d)))
if(!inherits(res.nls, "try-error")) {

res[i] = coef(res.nls)[3]
} else {

res[i] = NA
}

}

res
}

(You might wish to cut and paste this into a file from the pdf file on the web, then source that file in to
define the function.)

When this is run, it outputs a vector with simulations. For example,

> res = d.boot(1000)
Error in nls(Total ˜ f(year, N0, r, d), data = df, start = c(N0 = N0, :

singular gradient
Error in nls(Total ˜ f(year, N0, r, d), data = df, start = c(N0 = N0, :

number of iterations exceeded maximum of 50
Error in nls(Total ˜ f(year, N0, r, d), data = df, start = c(N0 = N0, :

number of iterations exceeded maximum of 50
Error in nls(Total ˜ f(year, N0, r, d), data = df, start = c(N0 = N0, :

number of iterations exceeded maximum of 50

The errors are when the nls() function failed. We can plot the distribution with a histogram as follows

> hist(res)

We can find 95% confidence intervals using the quantile() function as

> quantile(res,c(.025,.975),na.rm=T)
2.5% 97.5%

0.1588 0.3140

Notice, the na.rm=T to remove and NA values from consideration.
Thus the 95% bootstrap confidence interval on δ is (.159, .314).
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6 summary

We are trying to model the abundance of bluefin tuna, using the amount caught as some measure of total
abundance. We employ a model with exponential decay to some baseline. This baseline allows us to say
that from this analysis the tuna stocks are down 70% since 1980 with a 95% CI of (69%,84%).
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