
Notes on: MTH 804:: Least squares page 1

The method of least squares is widely used to select parameters for statistical models. The most
familiar example being the linear regression which models the response variable y as a function of the
covariates.

A simple example would be the model

yi = β0 +β1xi +β2x2
i + εi

where εi are iid normals with mean 0 and variance σ2. To illustrate, we can make a simulation with

> x.i = rep(seq(0,2,length=10),4)
> x.i
[1] 0.0000 0.2222 0.4444 0.6667 0.8889 1.1111 1.3333 1.5556
[9] 1.7778 2.0000 0.0000 0.2222 0.4444 0.6667 0.8889 1.1111

[17] 1.3333 1.5556 1.7778 2.0000 0.0000 0.2222 0.4444 0.6667
[25] 0.8889 1.1111 1.3333 1.5556 1.7778 2.0000 0.0000 0.2222
[33] 0.4444 0.6667 0.8889 1.1111 1.3333 1.5556 1.7778 2.0000
> y.i = 1 + 2*x.i + 3*x.iˆ2 + rnorm(40,mean=0,sd=1)
> plot(x.i,y.i) # shows slight curve

1 Minimizing functions in R

To try and fit the model
yi = β0 +β1xi +β2x2

i + εi

to the simulated data, the method of least squares would select β̂0, β̂1, β̂2 which minimize

∑
i

[
yi − β̂0 + β̂1xi + β̂2x2

i

]2
.

A “brute force” approach would be to use one of R’s functions for minimizing a function. These are (from
their help pages) for one-dimensional optimization

• uniroot() The function ‘uniroot’ searches the interval from ‘lower’ to ‘upper’ for a root (i.e.
zero) of the function ‘f’ with respect to its first argument. (Use with the derivative.)

• optimize()The function ‘optimize’ searches the interval from ‘lower’ to ‘upper’ for a minimum
or maximum of the function ‘f’ with respect to its first argument.

And for multivariable optimization

• optim()General-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained optimization and simulated annealing.

• nlm() This function carries out a minimization of the function ‘f’ using a Newton-type algorithm.
See the references for details.

Lets see how to do this with the optim() function.
First we define a function of the parameters we wish to minmimze. This is

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

Notes on: MTH 804:: Least squares page 2

f = function(beta) sum((y.i - (beta[1] + beta[2]*x.i + beta[3]*x.iˆ2))ˆ2)

The vector beta contains our coefficients. Notice, their indexing is off from above where we used
β0,β1 and β2. Also notice that the value of x.i and y.i are found outside of the function and are not
passed in here as arguments. How this is done is the topic of scoping.

To find the value that minimize this function, you only need to provide an initial guess for the param-
eters. For example, if we think they are near 1,1,1 we could minimize f with

> beta.0 = c(1,1,1)
> optim(beta.0,f)
$par
[1] 1.072 1.847 3.166

$value
[1] 41.12

$counts
function gradient

100 NA

$convergence
[1] 0

$message
NULL

The coefficients are found after $par. This means they can be found with optim(c(1,1,1),f)$par

> optim(c(1,1,1),f)$par
[1] 1.072 1.847 3.166

Recall, the data is simulated from the values 1,2,3.

2 lm() for linear models

R is used for statistical modeling and so should have built-in routines to handle this type of standard
problem and does. The lm() function handles linear models of which our example is. Recall, a linear
model is linear in the paramters, not necessarily the covariates. To find least square estimates for the
coefficients in our example we could also do

> lm(y.i ˜ x.i + I(x.iˆ2))

Call:
lm(formula = y.i ˜ x.i + I(x.iˆ2))

Coefficients:
(Intercept) x.i I(x.iˆ2)

1.07 1.85 3.17

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

Notes on: MTH 804:: Least squares page 3

2.1 Model formulas

To use lm() you need to learn a little about the model formula. The model

yi = β0 +β1xi +β2x2
i + εi

is expressed in R with the syntax

y.i ˜ x.i + I(x.iˆ2)

The basic parts are

• The
˜

which is read “is modeled by”

• The response variable, y.i, is on the left of the ˜.

• The covariates on the right side are represented in a manner different from ordinary mathematical
notation.

– First, there is an implicit intercept (a β0) so it isn’t specified. Rather you can unspecify it by
adding -1 to your formula.

– Next, the + is not addition of numbers, but an additional covariate. In the example it “adds”
x.iˆ2 to the model.

– The * is for interaction terms and not multiplication.

– The ˆ is not a power in the notation but rather gives interactions upto a certain level. So

(a + b)ˆ2

in the model formula would correspond to three terms in the model

αai +βai ∗bi + γbi

As we want the power to be a power in this example, we need to isolate the power symbol
using I() as illustrated.

More details on the notation are available in the built in manual “An Introduction to R” in the section
“Statistical models in R”. To find this, type help.start() and browse for it.

2.2 using lm()

Using the lm() function is a simple as specifying the model formula and optionally the data sets where
the variable names come from. In our example this isn’t applicable.

The result appears at first glance to just contain the coefficients, but actually contains much more.
Usually, one saves the result and then can apply one of several functions to it. For example, the summary
command gives a summary of the statistical inference for the model based on an assumption of iid errors
with a normal distribution (Normal(0,σ)).

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

Notes on: MTH 804:: Least squares page 4

> lm.res = lm(y.i ˜ x.i + I(x.iˆ2))
> summary(lm.res)

Call:
lm(formula = y.i ˜ x.i + I(x.iˆ2))

Residuals:
Min 1Q Median 3Q Max

-2.2199 -0.5220 -0.0529 0.7872 1.6889

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.072 0.414 2.59 0.014 *
x.i 1.847 0.965 1.91 0.063 .
I(x.iˆ2) 3.167 0.464 6.82 5e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.05 on 37 degrees of freedom
Multiple R-Squared: 0.965, Adjusted R-squared: 0.963
F-statistic: 514 on 2 and 37 DF, p-value: <2e-16

The plot() function will provide some diagnostic plots

> plot(lm.rs)
...skipped...

The functions, resid() and coef() return the residuals and the estimated coefficients:

> plot(resid(lm.res)) # not shown
> coef(lm.res)
(Intercept) x.i I(x.iˆ2)

1.072 1.847 3.167

2.2.1 Using update() to change the model

We may wish to consider other models. For example, the following models are a nested family of models

yi = β0 + εi

yi = β0 +β1xi + εi

yi = β0 +β1xi +β2x2
i + εi

yi = β0 +β1xi +β2x2
i +β3x3

i + εi.

One can use the following model formulas for these

> lm(y.i ˜ 1)
> lm(y.i ˜ 1 + x.i)
> lm(y.i ˜ 1 + x.i + I(x.iˆ2))
> lm(y.i ˜ 1 + x.i + I(x.iˆ2) + I(x.iˆ3))

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

Notes on: MTH 804:: Least squares page 5

Or, one can use the update() function to add terms to your model in a more convenient manner.
Thus, we could get the above with

> lm.0 = lm(y.i ˜ 1)
> lm.0

Call:
lm(formula = y.i ˜ 1)

Coefficients:
(Intercept)

7.38

> lm.1 = update(lm.0, . ˜ . + x.i)
> lm.2 = update(lm.1, . ˜ . + I(x.iˆ2))
> lm.3 = update(lm.2, . ˜ . + I(x.iˆ3))
> lm.3

Call:
lm(formula = y.i ˜ x.i + I(x.iˆ2) + I(x.iˆ3))

Coefficients:
(Intercept) x.i I(x.iˆ2) I(x.iˆ3)

0.980 2.605 2.167 0.333

The update() function takes a the result of an lm() call and allows you to add or drop terms. The . is
the left or right hand side of the old model in the new formula.

2.3 Model selection using sum of squares

A general rule for model selection is to penalize those models with more parameters. A formula to do so
is

Sum of Squares
n−2∗m

,

where m is the number of parameters, n the size of the sample and the sum of squares, the value of the
sum of squares after minimizing.

In R the sum of squares is found by adding the squared residuals. Thus the values could be found with

> sum(resid(lm.3)ˆ2)/(n -2*4)
[1] 1.280
> sum(resid(lm.2)ˆ2)/(n -2*3)
[1] 1.209
> sum(resid(lm.1)ˆ2)/(n -2*2)
[1] 2.577
> sum(resid(lm.0)ˆ2)/(n -2*1)
[1] 31.13

Recall, resid() will find the residuals. By this criterion the model

yi = β0 +β1xi +β2x2
i + εi

would be preferred.

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

Notes on: MTH 804:: Least squares page 6

2.4 using stepAIC() (MASS)

The above criterion and analysis takes no account of the error terms having an assumed distribution.
In the case that the error terms are assumed to be normally distributed, the AIC criterion may be used

for model selection. As before, one “chooses” the model with the lowest AIC. The AIC value is defined
in terms of likelihood.

This process can be somewhat tedious to find in practice. The stepAIC() function from the MASS
library will do the work for us

> stepAIC(lm.3)
Start: AIC= 8.94
y.i ˜ x.i + I(x.iˆ2) + I(x.iˆ3)

Df Sum of Sq RSS AIC
- I(x.iˆ3) 1 0.2 41.1 7.1
- I(x.iˆ2) 1 0.8 41.7 7.7
- x.i 1 1.6 42.5 8.4
<none> 41.0 8.9

Step: AIC= 7.1
y.i ˜ x.i + I(x.iˆ2)

Df Sum of Sq RSS AIC
<none> 41.1 7.1
- x.i 1 4.1 45.2 8.9
- I(x.iˆ2) 1 51.6 92.8 37.6

Call:
lm(formula = y.i ˜ x.i + I(x.iˆ2))

Coefficients:
(Intercept) x.i I(x.iˆ2)

1.07 1.85 3.17

Notice it chose the “correct” model in this case – the quadratic one.

3 nls() for non-linear least squares

The lm() model works on linear models. Other types of models exists. General linear models are one
extension. Other non-linear models may be involved too. For example, seeing the growth in our example,
one may be tempted to fit it with an exponential of the type

yi = aebxi + εi

This is a non-linear model as the coefficients (a,b) do not enter in a linear manner.
One can still use least squares methods here though to estimate a and b. The estimators, â, b̂ would be

found by minimizing

∑(yi − âeb̂xi)2

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

Notes on: MTH 804:: Least squares page 7

This could be done using optim() as before

> f = function(ab) sum((y.i - ab[1]*exp(ab[2]*x.i))ˆ2)
> optim(c(1,1),f)$par
[1] 1.854 1.142

However, the nls() function performs nonlinear least squares and returns a model object with the
helper functions such as coef() etc. defined.

To use nls() is similar to lm(), but the models are defined differently. In fact, they are perhaps
more natural as they use usual notations.

For example, we can define the right hand side with a function

> f = function(x.i,a,b) a * exp(b*x.i)

Then call nls() with the initial starting points for our parameters a,b as follows

> nls(y.i ˜ f(x.i,a,b),start = list(a=1,b=1))
Nonlinear regression model

model: y.i ˜ f(x.i, a, b)
data: parent.frame
a b

1.854 1.142
residual sum-of-squares: 51.57

Again, this answer contains more than meets the eye. To see more, we store it, and then illustrate some
additional functions

> nls.res = nls(y.i ˜ f(x.i,a,b),start = list(a=1,b=1))
> summary(nls.res)
Formula: y.i ˜ f(x.i, a, b)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 1.8538 0.1637 11.3 9.6e-14 ***
b 1.1420 0.0512 22.3 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.16 on 38 degrees of freedom

Correlation of Parameter Estimates:
a

b -0.973

The p values are calculated under the assumption of iid normal errors with mean zero and standard devia-
tion estimate by the residual standard error.

The usual helper functions coef(), formula(), ‘resid(), print(), summary(), AIC(),
fitted() and vcov(). For example,

> AIC(nls.res) # AIC of model
[1] 127.7
> plot(resid(nls.res)) # plot of residuals

on the web at
http://www.math.csi.cuny.edu/verzani/classes/MTH804/

