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The goal of this project is to simulate a dispersal algorithm taken from Chapter 3 of “Spread of an
Invading Population” by Mark Lewis.

1 background

R has many built-in random number generators that you can sample from. For example, this list is taken
from the “Introduction to R” manual accompanying the R program

Distribution R name additional arguments
beta beta shape1, shape2, ncp
binomial binom size, prob
Cauchy cauchy location, scale
chi-squared chisq df, ncp
exponential exp rate
F f df1, df1, ncp
gamma gamma shape, scale
geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis location, scale
negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda
Student’s t t df, ncp
uniform unif min, max
Weibull weibull shape, scale
Wilcoxon wilcox m, n

These are the “stem” for the “d,r,p and q” functions.
The “r” functions allow you to sample. To take a sample from a normal you use norm as

> rnorm(10) % for mean=0,sd=1
[1] 0.3958 -0.7842 -0.9949 -0.1029 -1.1473 1.6541 1.6763
[8] 1.0555 -1.2926 0.5646

> rnorm(5,mean=10,sd=5)
[1] 16.849 15.048 9.178 10.930 9.565

The “d” functions give a density. For example, this will plot the density of a normal, make a sample
and then plot the sample and a density estimate

> mu = 10;sigma = 5
> n = 35
> curve(dnorm(x,mu,sigma),mu-3*sigma,mu+3*sigma)
> x = rnorm(n,mu,sigma)
> rug(x)
> lines(density(x))
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1.1 Those are not enough?

In our simulation, we want to be able to use distributions that are not named. We’ll need some way of
generating random samples from them.

1.2 mixtures

A mixture of distributions is when more than one population is present. To sample from a mixture is
straightforward: choose which population and then sample from that one. This two-step approach requires
to samples – one to pick the population and one from the population.

For example, this will select from one of 3 normal populations.

> which.one = sample(1:3,1,p=c(.1,.2,.7))
> switch(which.one,rnorm(1),rnorm(1,10),rnorm(1,100))
[1] 9.461

The above example chooses from a mean of 1, 10 or 100 with probability .1, .2 and .7. In the example, it
clearly chose from the second one.

This can be simplified (no switch()) if you have only 2 things to choose from. For example

> p = sample(0:1,1,p=c(.3,.7))
> p*rnorm(1) + (1-p)*rnorm(1,10)
[1] -0.01223

Choosing p to be 0 or 1, make the selection easy.
If our sampling comes from some arbitrary function f , then we need to work a little harder. Suppose,

we have f (x) a density on [a,b] with maximum value M. A simple way of generating random samples
from f (x) is to choose two random variables U and V . U is uniform on [a,b] and V is uniform on [0,M].
If f (U) < V , then we use U , if not, we try again (and again,...).

Why does this work? When we actually select a value, the probability that is less than x is

P(selection < x) = P(U < x, f (U) > V ) =

� x

a

� f

0
(u)dvdu =

� x

a
f (x)dx = F(x).

To implement this we can use a while loop. For example. We can define an f and g as follows

f = function(x) 1 - abs(x)
g = function() {

M = 1; a= -1; b= 1
U = runif(1,a,b);V = runif(1,0,M)
while(f(U) < V) {

U = runif(1,a,b);V = runif(1,0,M)
}
cat("U,f(U),V are",U,f(U),V,"\n")
U

}

Then, g() will return a random sample.
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2 the algorithm

The dispersal algorithm is a “branching process” with dispersal. Initially there is a collection of “particles”
(plants, birds, ...). At the end of each year, each particle breeds and produces N j offspring and then die.
Then each of these offspring move off during the year. The motion is assumed (for now) to be radial.
That is, you specify independent directions and distances and the direction is assumed to be uniform.
Depending on the dispersal function, you can get different effects.

To model this we have the following steps

• Start with an initial set of particles at (x1,y1), . . ., (xn,yn).

• For each particle randomly choose the number of offspring according to some distribution. (Poisson
with rate λ.)

• Choose a random angle, θ (Uniform on [0,2π].

• Choose a random distance, r (from some dispersal function)

• Move the new born r cos(θ) in the x direction and r sin(θ) in the y direction.

• Repeat n steps

Then look at the resulting spatial distribution.
The algorithm is easily implemented in R. You can download it from http://www.math.csi.

cuny.edu/verzani/classes/MTH804/computer/invading.R, save it locally, and then source
it in with File > Source.

Once you have your copied stored locally, you can make changes to it as desired and re-source it in.
Depending on the branching rate λ and n the number of life cycles you may or may not have any

offspring left. Depending on the length of the tails of the dispersal function, you may or may not see
“clumping”.

Here are some things to try once you get the simulation working.

• Change the branching rate. λ = 1 is a critical value. Try it with a number much less than 1 to see
what happens.

• n and λ are related. If λ is much bigger than 1, then n better be small or the simulation will take a
long time. If λ is much smaller than 1, then extinction will happen relatively soon. So if n is large,
your simulation will stop with no offspring.

• The dispersal function can be varied to make different types of simulations. In general, these branch-
ing processes will cause clumping, but if the dispersal isn’t too great you can’t see the clumping too
well with the scatterplot. Changing the dispersal to have occasional large clumps makes these ap-
parent. For example, try a mixture of normals with mean of 0 and a mean of 100. Make the one of
100 relatively rare.

• Distances from the origin are given by
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> sqrt(xˆ2 + yˆ2)

Make a histogram of the distances. Does it relate to the dispersal function somehow?

• The farthest away point can be found from res as follows

> max(sqrt(xˆ2 + yˆ2))

Keep track of the farthest point away as you step through n. Plot it to see how it grows in n.

• For fixed n, do several simulations and store the value of the farthest point. Can you describe it’s
distribution?
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