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Once again, this review sheet comes with no guarantee that it even makes sense, let alone
will allow you to divine the contents of the final exam. Past performance may be an indicator
of future performance though.

This is a review for chapters 13 and 15. The other chapters that we covered in this term
are reviewed in two previous review sheets that may be found on the course website.

First, a reminder. The final exam will be Wednesday, May 22 at 12:15. We can take
up to 3 hours. This final will be of similar length to the previous in-class exams, although
it will cover material from the entire semester. There will be more material from chap-
ters 13 and 15 than others as we haven’t been tested on these yet. The exam will be open
book, as usual, you can use your calculator, but you are not allowed to bring in outside notes.

Chapter 13:

Chapter 13 if title “Goodness of Fit”. In this chapter, we learn how to test if data comes
from some specified distribution. Prior to this, we tested in chapters 10 and 12 if the data
came from a population with some specific parameter. For example, the t-test assumes the
data is normal (nearly so anyway) and tests if the population has a specified mean. The
variance test, tests if two data sets (which are both assumed to be normally distributed)
have the same variances.

For the tests we learned about in chapter 13 they test to see if the data fits some specified
distribution. The simplest one was the Chi-squared test. The other was the Kolmogorov-
Smirnov test. We did not cover the Likelihood Ratio test explicitly (although, I could ask
such material if I wanted you to derive it as that we did cover), and we did not cover paired
tests for homogeneity. (That is, we did cover sections 13-1 to 13-5 but not the last part of
13-4 which coovered rankit plots from page 539 line 3 to the end of the section.)

Chi-Squared tests:

The multinomial model is similar to the binomial model only there are more categories
that just 2: success and failure. For example a dice roll has 6 possible outcomes, and if
we rolled a die lots of times, the number of 1’s, 2’s etc. we had would have a multinomial
distribution. Operatively, we have a sequence of independent trials, each resulting in one of
several categories and the probability of a getting a specific category does not change from
trial to trial. The model is specified in terms of the number of trials n, and probabilities
of the categories p1, p2, ... pk. The Chi-Squared test allows us to test the hypotheses
H0 : p1 = π1, ...pk = πk against the alternative that one or more of these is incorrect. That is
we are testing if the data comes from the specified distribution. The test statistic used was

χ2 =
k∑

i=1

(fi − ei)
2

ei

Where fi is the frequency of category i for the data and ei is the expected number we
should have found in category i under Ho. This is easy to calculate, it is the probility times
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the number of trials or ei = nπi. To do the hypothesis test, we need to know the sampling
distribution, which in this instance is chi-squared with k − 1 degrees of freedom.

A refinement to this is also discussed. First, we can summarize the null hypothesis
above as p = π in vector form. The refinement, is if we paramterize the π by some values
π = π(θ1, ..., θr) and then use the data to predict the values of the θ. If we do this, then the
chi-squared statistic should be smaller in value, as we are using the data to fit the paramters.
Indeed this is true, and as such the distribution changes. If we fit r parameters, then the
chi-squared statistic has k − 1− r degrees of freedom.

In section 13-5, another application of this statistic is used to test the hypothesis that
the rows of a 2-way contigency table are independent. In general, a 2-way contigency table,
is similar to the above based on a multinomial distribution with cell probabilities naturally
indexed by πij where i if the row and j is the column. The null hypotheses of independence
is simply stated as pij = pi·p·j where the latter are the marginal probability. Notice, this
parameterizes the values of pi,j by the smaller set of values pi·, p·j. That is, we have to fit
r − 1 plus c − 1 values so the new statistic will have n − 1 − (r − 1) − (c − 1) degrees of
freedom where n = rc. This simplifies to (r−1)(c−1). Finally, what to predict the pi· with?
Why the m.l.e’s which turn out to be the sample proportions. For pi· that is the number of
samples in the ith row category divided by the total number of samples. Succinctly, the row
sum divided by n.

Kolmogorov-Smirnov Statistic:

The Kolmogorov-Smirnov statistics are based on the cumulative distribution functions,
or c.d.f. These are the integrated densities, or F (x) = P (X ≤ x). The empirical c.d.f.
is based on the data. It is Fn(x) = #{i : Xi ≤ x}/n. The K.S. tests are based on
the fact that when the data come from the distribution F , the asymptotic distribution of
Dn = max ‖Fn(x) = F (x)‖ is

P (
√

nDn ≤ x) →
∑

j

(−1)je−2j2x2

In class, we used just the terms j = −1, 0, 1 to get a quick approximation. The book
contains tables.

How is this used? To test the hypothesis that H0 the data is from F , against the
alternative HA that it is not, we can use the test statistic Dn which under H0 has the above
distribution.

This was generalized to test if two samples are from the same distribution H0 : F = G.
There is a slightly different asymptotic distribution.

Finally, the book covers a variant to test for normality. If we want to test if the data
is normal(0,1) we just use the above. If we want to test the data is normal(µ, σ2) with un-
specified values for µ and σ, then the book suggests using X̄ for µ and S2 for σ2. As usual,
when we use the data, to pick the parameters we get less variation. So the distribution of
Dn changes. A table is in the book.
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Linear Regression:

We covered linear regression in class. We started with the model

Y = Zβ + ε, or yi = α + βxi + εi

where the εi are assumed to all be normal(0,σ2). That is, the data (xi, yi) are assumed to
be in a linear relatiship with slope β and intercept α. However, there is some noise or error
that makes this not quite so when we sample.

There are 3 parameters to the model α, β and σ2. In class, we showed that if we choose
α, β to minimize the squared residuals (that is minimize

∑
(yi − a − bxi)

2) that we can
solve for α and β with the formulas

β̂ =
SSxy

SSxx

=

∑
(xi − x̄)(yi − ȳ)∑
(xi − x̄)(xi − x̄)

, α̂ = ȳ − β̂x̄

Furthermore, we saw in class, that as yi is distributed as normal(α + βx, σ2) the method
of maximum likelihood estimation yields the same values for α̂ and β̂ and a value of

σ̂2 =
1

n

∑
(yi − ŷi)

2

where ŷi = α̂|β̂xi is the estimate for yi and the difference yi − ŷi is called the residual. The
above estimate is biased, so we use the unbiased one instead. This involves dividing by n−2
and not n

σ̂2 =
1

n− 2

∑
(yi − ŷi)

2

Now, with these, we proceeded to find the sampling distributions of the three estimators.
In summary, they are

• β̂ is normal(β, σ2/SSxx). That is normal. unbiased with the specified mean

• α̂ is normal(α, σ2(1/n + x̄2/SSxx)). Again, normal, unbiased with specified variance.

• σ̂2 has (n − 2)σ̂2/σ2 is chi-squared with n− 2 degress of freedom

Testing hypotheses:

To test assumptions about the slope and intercept, we could use the sampling distri-
butions above if we know σ. Unfortunately, we often don’t. As such we use S to replace
σ. A consequence is the distributions change from normal to t. For example, Under the
assumption that H0 : β = β0 we have the sampling distribution of

t =
β̂ − β0

σ̂2/SSxx
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is t with n− 2 degrees of freedom. This can be used to construct confidence intervals for β
or to perform tests of significance.

Confidence intervals for prediction based on the regression line:

One goal of finding a regression line is to make predictions about new measurements. For
example, the line may be used to make a prediction for another sample, or it may be used
to make a prediction for an average. There is a subtley here. To make a prediction for the
average value of y for a given x we use ŷ, and the variance is given by

var(ŷ) = σ2(
1

n
+

(x− x̄)2

SSxx

However, if we have to make a prediction for a given individual – and not an average
– the variance we would expect to be greater. In this case. If we gather a regression line,
then take one more data point with x value x0, then the predicted value for y0 would still
be ŷ = α̂ + β̂x0, but the variance is now

var(ŷ) = σ2(1 +
1

n
+

(x− x̄)2

SSxx

That is, there is a new value of 1 slipped in there. It doesn’t look like much, but it makes
a big difference in terms of what you see. Here is a concrete example from page 614. The
data is

chirp 20 16 20 18 17 16 15 17 15 16

temp 89 72 93 84 81 75 70 82 69 83

> sum((chirp - mean(chirp))^2)

[1] 30 # this is SS_xx

This is data which tries to predict the outside temperature by the number of chirps per
sec of crickets.

The output from the computer is

> summary(lm(temp ~ chirp))

Call:

lm(formula = temp ~ chirp)

Residuals:

Min 1Q Median 3Q Max

-3.733 -2.417 -0.300 1.150 7.267

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.6667 10.6639 1.000 0.346473
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chirp 4.0667 0.6241 6.517 0.000185 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.418 on 8 degrees of freedom

Multiple R-Squared: 0.8415, Adjusted R-squared: 0.8217

F-statistic: 42.47 on 1 and 8 DF, p-value: 0.0001849

And the graph of the regression line with both confidence intervals is
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Notice, the difference and similarities between the two. In particular, they both are bend-
ing. This is due to the (x− x̄)2 term. As we get farther from the mean of x the confidence
intervals get larger. As for differences, they say different things. In particular, if you want
to know what the average temperature is outside when there are 19 chirps, then the 95%
confidence interval is about (83,89). Whereas, if a given night you hear 19 chirps, and you
want to predict the temperature for that night, then the range for a 95% confidence interval
if from 78 to over 95.

Review Problems:

1. For the chirp example, find a 80% confidence interval for the value of β.

2. For the chirp example, do a test of significance to determine if β is 9 against the
alternative that it is more than 9.

3. For the chirp example, compute the Standard error of α̂. Compare to that found by
the computer.

4. Find the two 95% confidence intervals as above when x = 16. Explain why there is a
difference.

5. Do a K.S. test to decide if this data comes from exp(2).
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0.60 0.53 0.73 0.97 0.52 0.54 0.64 0.06 0.95 0.47

6. Do a K.S. test to dedide if these two rows of data come from the same distribution

x: 76 66 65 76 69

y: 89 90 83 103 102 77

7. Are these rows independent?

y

x 5 23 13 7

8 25 10 4

Does this table of data satisfy the hypothesis that p = (a, b, c, b, a)? (That is, p1 = p5,
p2 = p4.)

category 1 2 3 4 5

-----------

count 5 10 15 8 7
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