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Let the parent distribution be described by a p.d.f. f (x) with c.d.f. F(x). Let X be a random variable
with the parent distribution. We have E(X) = µ and SD(X) = σ. A random sample from the parent
distribution, X1,X2, . . .,Xn is an iid collection of random variables each distributed like X . A statistic, T ,
is a function of the random sample. It too is a random variable and so has its own distribution called the
sampling distribution. In addition to the distribution of T , we may be interested in it’s mean and standard
deviation.

1 Finding random samples

R has built in functions to plot a p.d.f and to find a sample from a parent distribution. The “d-functions”
will give the density, and the “r-functions” will help find a sample. For example, if the parent distribution
is normal with mean 5 and standard deviation=2 the following will plot the density, take a sample, plot it
as lines and make a density estimate from the sample.

> curve(dnorm(x,mean=5,sd=2),-1,11)
> x = rnorm(25,mean=5, sd = 2)
> rug(x)
> lines(density(x), lty=2)

R has other distributions, but they are used similarly. The stem for the normal is norm. The functions
are “r” or “d” connected to the stem. For example, these are the “d-functions” for some families of
distributions: dbinom(x,size=n,prob=p) for the binomial(n, p), dexp(x,rate=lambda) for
exponential with mean 1/λ, dt(x,df=df) for the t-distribution with df degrees of freedom (later) and
dlnorm(x,meanlog=mu,sdlog=sigma)() for the log-normal distribution.

Many of the parameters have a default. For example, dnorm uses mean 0 and standard deviation 1.

Exercise 0.1 For each of these stems: exp, unif and t (with df=3) plot the density, take a sample of
size 25 and plot it with rug() and plot a density estimate.

Exercise 0.2 For norm plot the density, then take samples of size 25,100 and 1000 and plot density
estimates. Does the estimate get better as the sample size increases?

2 sampling distributions

When we have a statistic, we can sometimes work out a sampling distribution. Even when we can it may
not lend itself to ready analysis. For example, we find this formula for the Median when Xi are from a
continuous distribution
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We could plot this using the “p-functions”, but lets look at a simulation. That is, we will generate our
own random samples from this distribution. There won’t be a built in function, so we’ll need to so some
extra work.

For example, this will simulate the median when n = 15 = 2(7)+1, m = 250 times for Xi normal with
mean 0 and standard deviation 1.
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> res = c() # a place to store the data
> k = 7; n = 2*k+1; m = 250 # parameters
> for(i in 1:m) res[i] = median(rnorm(n)) # for loop
> hist(res) # view results with histogram, qqplot
> qqnorm(res)

The key line is the for loop which loops over 1 through m taking a new sample each time and storing
its median into res[i].

If you run this, the graphs will indicated the distribution is approximately normally distributed.

Exercise 0.3 Repeat the above with rexp(n) instead of rnorm(n). Is there a difference in the sam-
pling distribution from before? What about if k = 100 is the sampling distribution approximately normal?

Exercise 0.4 To simulate the sample standard deviation, S, for normal data, you would replace res[i]
= median(rnorm(n)) with the similar res[i] = sd(rnorm(n)). Do so with n = 15 and de-
scribe the shape of the sampling distribution of S.

3 easy editing

Typing these commands again and again can be a chore. A trick to help out is to store them inside a
function which can be easily edited. Here’s how.

First make a function, simit, using the function() keyword as follows

> simit = function ()

Then edit the function using the edit() command. Notice, we need to reassign the result of edit to
the function

> simit = edit(simit)

This opens up a text editor, make changes to leave the file like this

simit = function() res = c() k = 7; n = 2*k+1; m = 250 for(i in 1:m) res[i] = median(rnorm(n)) hist(res)

Save the function (R has named it already with a secret name) and exit the editor. Running the function
as follows will make the simulation and store them in res and plot the histogram. You can then plot the
quantile plot as

> simit() # run the function
> qqnorm(res) # plot res

Repeat by changing the function definition.
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4 The Central Limit Theorem (CLT)

Perhaps the most important statistic is X̄ = (X1 + · · ·Xn)/n. It has a distribution that can be explained using
complicated expressions involving f and F , however, it also has a limit that can be easily explained.

First, the mean and standard deviation of X̄ are easy to find. The mean is always easy for a sum, the
standard deviation is as Xi are assumed to independent. These values are

E(X̄ ) = µX̄ = µ, SD(X̄ ) = SX̄ = σ/
√

n.

That is the mean of the sample average is also the population mean, but the standard deviation of the
sample average is the population standard deviation divided by

√
n.

To illustrate, this will plot simulations of the sample average for normal data for n = 4,16,64 and 256

> n = c(4,16,64,256)
> res = c()
> plot(0,0,pch=" ",xlim=c(-2,2),ylim=c(0,12))
> for (i in n) + for(j in 1:m) res[j] = mean(rnorm(i))+ lines(density(res))+

If you type this in, notice how the center is always at µ = 0, but the spread gets cut 1/2 each time.
The graph of the density estimate looks bell-shaped which is due to the fact that when X1,X2, . . .,Xn

are iid normal then the sampling distribution of X̄ is also normal with the mean and standard deviation
above.

The amazing fact is that no matter what the parent distribution is, as long as it has a µ and σ the
distribution of X̄ is approximately normal if n is large enough. This is the central limit theorem which
states that

lim
n

P(a ≤
X̄n −µ
σ/

√
n
≤ b) = P(a ≤ Z ≤ b),

where Z is a standard normal.

Exercise 0.5 Simulate X̄ when n = 25 and Xi are uniform on [0,1] (the default for runif. Is X̄25 approx-
imately normal? That is, is n large enough in this case?

Exercise 0.6 Simulate X̄ when n = 25 and Xi are exponential with parameter λ = 1/10. (Use rexp(n,rate=1/10)).
Is X̄25 approximately normal? That is, is n large enough in this case? In not, try with n = 100. Is it large
enough now?

4.1 Monte Carlo

The central limit theorem can be used to “integrate” functions. Suppose, you need to integrate

� √
π

0
sin(x2)dx

No anti-derivative is available, so you need to use a numeric method. The Monte Carlo method will also
work. Basically, it says you can integrate this by looking at the sampling distribution of a random variable.
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How? to integrate � b
a g(x)dx let X be uniform on [a,b] and look at the random variable (b−a)g(X). It

has expectation given by

E((b−a)g(X)) = (b−a)
�

g(x)P(X = dx) = (b−a)
� b

a
g(x)

1
b−a

dx =
� b

a
g(x)dx.

That is the mean of (b−a)g(X) is the value we want. By taking a sample of (b−a)g(Xi) and finding its
sample mean, (b−a)ḡ, we have a random variable with mean that gives the number we want and standard
deviation bounded by (b−a)max(g2)/

√
n. The value of n can be chosen so large that the estimate (b−a)ḡ

is basically the integral.

Exercise 0.7 Try this out with n = 100 and n = 1000. What is your guess for the integral

� √
π

0
sin(x2)dx?

Check yourself with the R command integrate()

> integrate(function(x) sin(xˆ2),0,sqrt(pi))
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