Draw the angles on the unit circle:
$$30^\circ,270^\circ, \frac{\pi}{3}, -\frac{2\pi}{3}, \frac{7\pi}{4}, \frac{101\pi}{4}$$
For each angle, label the point of intersection with the unit circle.
Draw the appropriate acute triangle for the following angles and find the sine of $\theta$
$$\theta = \pi /3, \theta = \pi/4, \theta = \pi/6$$
For each angle, draw it on the unit circle, find the reference angle in the first quadrant. Use this to find the sine.
$$\theta = \frac{3\pi}{4}, \theta = \frac{7\pi}{4}, \theta = \frac{7\pi}{3}$$
Draw a graph of the following trigonometric functions on the interval $[-2\pi,2\pi]$.
$f(x) = \sin(x)$
$g(x) = \sin(2x)$
$h(x) = 3+\sin(2x)$
$i(x) = 3+4\sin(2x)$
$j(x) = 3+4\sin(2x + 5)$
Solve the trig equations for all solutions in $[0,2\pi]$.
$\sin\theta = \sqrt{2}/2$
$\sin\theta = -\sqrt{2}/2$
$4 \sin^2\theta = 3$
Use the right identity to find the following:
$\cos(15^\circ) = \cos(30^\circ/2)$. (No calculator!)
$\sin(75^\circ) = \sin(30^\circ + 45^\circ)$
Label $a$, $b$ and $c$ on this diagram.