Problem 1. Suppose you have a power series centered at 2:

$$
\sum_{n=0}^{\infty} a_{n}(x-2)^{n}=a_{0}+a_{1}(x-2)+a_{2}(x-2)^{2}+a_{3}(x-2)^{3}+\cdots
$$

You can't figure out the interval of convergence without knowing the coefficients a_{0}, a_{1}, \ldots. But which of the following are possible intervals of convergence and which can you rule out?
(a) the power series converges when $1<x<3$, i.e., in the interval $(1,3)$
(b) the power series converges when $1 \leq x \leq 3$, i.e., in the interval $[1,3]$
(c) the power series converges when $1 \leq x<3$, i.e., in the interval $[1,3)$
(d) the power series converges when $x<1$ or $x>3$, i.e., in the intervals $(-\infty, 1)$ and $(3, \infty)$
(e) the power series converges when $1<x \leq 4$, i.e. in the interval $(1,4]$
(f) the power series converges when $x>0$, i.e., in the interval $(0, \infty)$
(g) the power series converges for all values of x, i.e., in the interval $(-\infty, \infty)$
(h) the power series never converges for any choice of x
(i) the power series converges only when $x=2$

Problem 2. What is the interval of convergence for the following power series?

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}
$$

