1. Compute the following integrals:
(a) $\int \frac{\cos x}{1-\sin x} d x$

Solution: Set $u=1-\sin x$, substitute with $d u=-\cos x d x$ to get

$$
\int \frac{\cos x}{1-\sin x} d x=-\int \frac{1}{u} d u=-\ln |1-\sin x|+C
$$

(b) $\int \frac{x}{\sqrt{1-2 x^{2}}} d x$

Solution: Set $u=1-2 x^{2}, d u=-4 x d x$, substitute:

$$
\int \frac{x}{\sqrt{1-2 x^{2}}} d x=-\frac{1}{4} \frac{d u}{\sqrt{u}}=-\frac{1}{4} \frac{u^{1 / 2}}{1 / 2}=-\frac{1}{2} \sqrt{1-2 x^{2}}+C .
$$

(c) $\int_{-1}^{0} t(t+1)^{11} d t$

Solution: Set $u=t+1, d u=d t$, substitute:

$$
\begin{aligned}
\int_{-1}^{0} t(t+1)^{11} d t=\int_{0}^{1}(u-1) u^{11} d u=\int_{0}^{1}\left(u^{12}-u^{11}\right) d u & =\frac{u^{13}}{13}-\left.\frac{u^{12}}{u}\right|_{0} ^{1} \\
& =\frac{1}{13}-\frac{1}{12}=-\frac{1}{156}
\end{aligned}
$$

The key thing here is that you have to use the substitution $t=u-1$ in the first step.
2. Find the area bounded between the curves $y=x$ and $y=x^{2}-6$ from $x=0$ to $x=5$.

Solution: The graphs look like this:

We need to figure out where the two curves intersect. Setting $x=x^{2}-6$ and solving, we get $x=-2,3$. So, the curve $y=x$ is above $y=x^{2}-6$ from 0 to 3 but below from 3 to 5 . The area between the two curves is then

$$
\int_{0}^{3}\left(x-\left(x^{2}-6\right)\right) d x+\int_{3}^{5}\left(\left(x^{2}-6\right)-x\right) d x=157 / 6 .
$$

3. Consider the region bounded by $y=x^{2}-4 x$ and the x-axis.
(a) What's the volume of this region rotated around the x-axis?
(b) What's the volume of this region rotated around the axis $y=1$?

Solution: The zeros of $x^{2}-4 x$ are $x=0,4$. The vertical cross-sections of the region rotated around the x-axis are circles. The slightly nonstandard thing in this problem is that $y=x^{2}-4 x$ is below the x-axis. So, each cross-section is a circle with radius $-\left(x^{2}-4 x\right)$. Thus the region has volume

$$
\int_{0}^{4} \pi\left(-\left(x^{2}-4 x\right)\right)^{2} d x=\int_{0}^{4}\left(x^{4}-8 x^{3}+16 x^{2}\right) d x=\frac{512 \pi}{15} .
$$

When we rotate around $y=1$, each cross-section is an annulus with outer radius $1-\left(x^{2}-4 x\right)$ and inner radius 1 . Thus the volume is

$$
\int_{0}^{4} \pi\left(\left(1-\left(x^{2}-4 x\right)\right)^{2}-1^{2}\right) d x=\frac{832 \pi}{15} .
$$

4. Consider the pyramid whose base is a 1×1 square and whose top vertex is at height 1 above the square. Find its volume using an integral.

Solution: Using similar triangles, the horizontal cross-section at distance h from the top of the pyramid is a square with side length h. (This is the hard part, but if you draw a picture you'll see it.) So, the area of this cross-section is h^{2}. We add up all of these areas as h ranges from 0 to 1 to find the volume:

$$
\int_{0}^{1} h^{2} d h=\frac{1}{3} .
$$

5. Consider the graph of f shown below:

Let $g(x)=\int_{0}^{x} f(t) d t$.
Find $g(0), g^{\prime}(0)$, and $g^{\prime}(2)$. Sketch $g(x)$.

Solution: We have $g(0)$ since it's an integral from 0 to 0 . For $g^{\prime}(0)$ and $g^{\prime}(2)$, we use the Fundamental Theorem of Calculus, which says that $g^{\prime}(x)=f(x)$. So $g^{\prime}(0)=1$ and $g^{\prime}(2)=0$. Here's a sketch of g. The idea is to draw a function whose derivative is f and that goes through the origin (since $g(0)=0$).

6. The concentration of live virus in a petri dish declines exponentially over the course of a day. After t hours, the concentration of virus is $e^{-3 t}$ times its original level.
What is the average level of virus throughout the day (i.e., from time $t=0$ to $t=24$)?

Solution: It's given by

$$
\frac{1}{24} \int_{0}^{24} e^{-3 t} d t=\left.\frac{1}{24}\left(-\frac{1}{3} e^{-3 t}\right)\right|_{0} ^{24}=\frac{1}{72}\left(1-e^{-72}\right) \approx \frac{1}{72}
$$

That is, on average the amount of virus throughout the day is about $1 / 72$ times its original level.

