10.

d
. Using Implicit differentiation derive the formula d—(arcsin T) =
T
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. Find the equation of tangent to the curve y = arccos(z® — 1) at the

point (1,0).

Sketch the region enclosed by the curves y = 22 — 2 and y = 6 — 22 and
find its area.

Sketch the region enclosed by the curves y = sin 2z and y = cosx and
the lines = 0 and = 7/2 and find its area.

Find the volume of the solid obtained by revolving the region bounded
by the curves y = 2% and x = y? about the line x = —1 using the discs
method as well as the shell method.

Set up the integrals to find the volume of the solid obtained by revolving
the region bounded between the curves y = 2> —1 and the line y = 2 +5
about the following axes:

(a) y =10 (Use Washer Method)
(b) & =3 (Use Shell Method)

Find the volume of the given solid obtained by rotating the region
bounded by given curves about the specified axis.

(a) y=12%y =0,z =2 about z-axis.

(b) y = 23,y = 22 — 2% in the first quadrant rotated about z-axis.
Find the arc length of the following curves.

(a) y =In(cosz) from z =0 to z = 7/4.
(b) z=1(ev+e¥) fromy=—-1toy=1

Find the length of the curve y = %2 for 0 < z < 1.

Evaluate the following integrals.
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11. Determine whether the following series converge or diverge. Indicate
which test you are using.
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16.
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Express the following repeating decimal as a fraction.

(a) 1.234343434 . .. (b) 2.172172172172 ...

oo

Suppose that the series Y ¢, (z—1)" converges when z = 4 and diverges
n=1

when x = 6. What can you say about the convergence or divergence of

the following series?
(a) D 2" (b) > ca(—1)"3" (c) > ca(=1)"
n=1 n=1 n=1

Find a power series representations of the following functions (You may
choose the center).

(a) f(z) = tan™"(32) (d) fla) = eV
a? o) Fla) — sin(3z?)

(b) J(#) = T ) fla) ==

(c) f(z) =In(l+x) (f) f(z) = / e dx

Find Taylor series of the given function at given point.

(a) f(z) =¢€** a=2 (¢) flx)=vV1+z,a=0
(b) f(z) =1/2,a==3

By recognizing each of the following series as a Taylor series evaluated
at a particular value of x, or otherwise, find the sum of each of the
following convergent series.
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17.

18.

19.

20.

21.

22.
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Find the Taylor or Maclaurin polynomial for the given function, for the
given degree, centered at the given point.

(a) f(z)=2*n=3,c= (d) f(z) =sin(3z),n =5,c=0
(b) flz)=H,n=4,c=1
(c) f(z) =lnz,n=4,=2 (e) f(z)=vx,n=4,c=1

How good are the following approximations? (use error bound for Tay-
lor polynomial)

(a) cos(0.3) ~1— (0275?)2 + (0;13!,)4

(b) e~1+145+35+73+5

Find the equation of tangent at the given point on the given parametric
curve.

(a) z =cost,y =3sint at t = 0.

) v=+ty=vt—T1att=2.

Find all the points of horizontal and vertical tangency to the parametric
curve x =t —t +2 and y = 3 — 3t.

Find a parameterization for the parabola y = 2% from (0,0) to (1,2),
and use this to find:

(a) The length of the curve.
(b) The surface area of the shape obtained by rotating this curve
around the z-axis.

Draw the curve in polar coordinates given by r = 1 4 sin 6.

(a) Find the area enclosed by the curve.
(b) Write down the formula for the length of the curve

(c) Find the arc length of the curve. (Hint: set § = 2t and the observe
that the expression in the square root is a perfect square.)



