I pledge that I have neither given nor received unauthorized assistance during this examination.

Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise **you must show your work** sufficiently much that it's clear to me how you arrived at your answer.
- No calculators or electronic devices are allowed.
- Unless the problem specifically says, you **do not** need to calculate the final answer. An answer that looks something like

$$\frac{\binom{6}{2}\binom{8}{5}}{\binom{23}{4}}$$
 or $\frac{(12)(11)(10) + (11)(10)(9)}{14!}$

is entirely acceptable.

- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 10 problems on 8 pages.

Question	Points	Score
1	15	
2	9	
3	6	
4	11	
5	10	
6	10	
7	12	
8	5	
9	1	
10	4	
Total:	83	

Good luck!

[15 points] 1. Suppose we roll a 6-sided die over and over again.

In the following answers, you don't need to compute a final answer, and you may leave an expression like $\binom{13}{6}$ in that form. But you should not leave your answer as an infinite sum.

(a) What is the expected number of rolls to get a six?

Solution: This is the expected value of the Geo(1/6) distribution, which is 6.

(b) What is the probability that it takes exactly 5 rolls to get a six?

Solution: It's the probability of rolling 4 non-sixes followed by a six, or

$$\left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)$$
.

(c) What is the probability that it takes 5 or more rolls to get a six?

Solution: It's best to think of this as the probability that the first 4 rolls are non-sixes:

$$\left(\frac{5}{6}\right)^4$$

(d) What is the probability of getting 2 or fewer sixes in the first 10 rolls?

Solution: This is $P(S \le 2)$ where $S \sim \text{Bin}(10, 1/6)$:

$$(5/6)^{10} + \binom{10}{1}(5/6)^9(1/6) + \binom{10}{2}(5/6)^8(1/6)^2.$$

(e) What is the probability that the sum of the first 2 rolls is 4 or less?

Solution: This is the probability of the first two rolls being either (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), or (3, 1), which is a total of 6 of the 36 equally likely outcomes for the first two rolls. Thus the probability is 6/36 = 1/6.

[9 points] 2. Suppose X and Y have joint density function

$$f(x,y) = \begin{cases} \frac{12}{7}(xy+y^2) & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find the marginal probability density function of X. Fully compute all integrals. Be sure to clearly state where the p.d.f. is zero and where it's nonzero.

Solution: For $0 \le x \le 1$,

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy = \int_0^1 \frac{12}{7} (xy + y^2) \, dy = \frac{12}{7} (xy^2/2 + y^3/3) \Big|_{y=0}^{y=1}$$
$$= \frac{12}{7} (x/2 + 1/3)$$

(b) Find P(X < Y). Set up integrals but do not compute them.

Solution: We must integrate the density over the region $\{(x,y): x < y\}$:

$$P(X < Y) = \int_0^1 \int_0^y \frac{12}{7} (xy + y^2) \, dx \, dy$$

(c) Compute $E(e^{XY^2})$. Set up integrals but do not compute them.

Solution:

$$\int_0^1 \int_0^1 e^{xy^2} \frac{12}{7} (xy + y^2) \, dx \, dy.$$

[6 points] 3. Let $X \sim \text{Unif}[0,2]$. Let Y = 1/X. Find the probability density function of Y. If the density is zero outside of some region, be sure to clearly state this.

Solution: We compute the c.d.f. of Y. Since X is between 0 and 2, the random variable Y is between 1/2 and ∞ . For $x \ge 1/2$,

$$F_Y(x) = P(Y \le x) = P(X \ge 1/x) = \frac{2 - 1/x}{2} = 1 - \frac{1}{2x}.$$

Now we compute

$$F_Y'(x) = \frac{1}{4x^2}.$$

So, the density is

$$f(x) = \begin{cases} \frac{1}{4x^2} & \text{if } x \ge 1/2\\ 0 & \text{otherwise.} \end{cases}$$

4. There are 5 types of sandwiches for sale at a shop. For 10 days, you go to the shop for lunch and order one of the 5 sandwiches uniformly at random, independently of previous days.

[4 points]

(a) What is the probability that you order the falafel sandwich sometime during the 10 days?

Solution: It's easier to compute the probability of never ordering the falafel sandwich: $(4/5)^{10}$. Thus the probability that you ever order the falafel sandwich is $1 - (4/5)^{10}$.

[4 points]

(b) Let X be the number of different sandwiches out of the 5 types you try in the 10 days. Find E(X).

Solution: Write X as $B_1 + B_2 + B_3 + B_4 + B_5$ where B_i is an indicator on ever ordering sandwich type i. From the calculation before about the falafel sandwich, $E(B_i) = 1 - (4/5)^{10}$. By linearity of expectation,

$$E(X) = 5(1 - (4/5)^{10}) \approx 4.46.$$

[3 points]

(c) For i = 1, ..., 5, let X_i be the number of times you order sandwich type i in the 10 days. Are $X_1, ..., X_5$ independent? Justify your answer.

Solution: No, they are not independent. For example,

$$P(X_1 = 3, X_2 = 3, X_3 = 3, X_4 = 3, X_5 = 3) = 0,$$

since the total number of sandwiches ordered has to be 10. But this is not equal to $P(X_1 = 3)P(X_2 = 3)P(X_3 = 3)P(X_4 = 3)P(X_5 = 3)$, since each of those probabilities is nonzero.

5. Suppose that $X \sim \text{Poi}(100)$, and recall that E(X) = 100 and Var(X) = 100.

[3 points]

(a) Give a bound on $P(X \ge 120)$ using Markov's inequality.

Solution:

$$P(X \ge 120) \le \frac{E(X)}{120} = \frac{5}{6}.$$

[3 points]

(b) Give a bound on $P(X \ge 120)$ using Chebyshev's inequality.

Solution:

$$P(X \ge 120) = P(X - 100 \ge 20) \le \frac{\text{Var}(X)}{20^2} = \frac{1}{4}.$$

[4 points]

(c) Recall that if X_1, \ldots, X_{100} are independent and $X_i \sim \text{Poi}(1)$, then $X_1 + \cdots + X_{100} \sim \text{Poi}(100)$. Using the central limit theorem, estimate

$$P(X_1 + \cdots + X_{100} > 120),$$

to get another estimate of $P(X \ge 120)$. Write your answer in terms of $\Phi(x)$, the cumulative distribution function of the standard normal distribution.

Solution: The sum $X = X_1 + \cdots + X_{100}$ has mean 100 and variance 100. By the central limit theorem,

$$\frac{X - 100}{\sqrt{100}}$$

approximately has the N(0,1) distribution. So,

$$P(X \ge 120) = P\left(\frac{X_1 + \dots + X_{100} - 100}{10} \ge \frac{120 - 100}{10}\right) \approx 1 - \Phi(2) \approx 0.023.$$

6. Customers arrive at a store. After a customer arrives, the number of minutes until the next customer arrives is random with distribution Exp(1). The times between customer arrivals are all independent.

A customer arrives. Let X be the number of minutes from now until two more customers arrive.

[3 points] (a) What is E(X)?

Solution: Let T_1 be the time from now until the next customer arrives, and then let T_2 be the time from then to the next customer. Then $X = T_1 + T_2$. We are told that $T_1, T_2 \sim \text{Exp}(1)$ and that T_1 and T_2 are independent. We have $E(T_i) = 1$ by our knowledge of the exponential distribution. By linearity of expectation,

$$E(X) = E(T_1) + E(T_2) = 1 + 1 = 2.$$

[3 points] (b) What is Var(X)?

Solution: We have $Var(T_i) = 1$ by our knowledge of the exponential distribution (or we could compute it). Since T_1 and T_2 are independent,

$$Var(X) = Var(T_1) + Var(T_2) = 2.$$

[4 points] (c) What is the probability density function of X?

Solution: We use the convolution formula:

$$f_X(x) = \int_{-\infty}^{\infty} f_{T_1}(u) f_{T_2}(x - u) du = \int_0^x e^{-u} e^{-(x - u)} du = \int_0^x e^{-x} dx = x e^{-x}.$$

7. You roll two 4-sided dice. Let U be the minimum and V be the maximum of the two rolls.

[6 points]

(a) Find the joint probability mass function of U and V. It is easiest to show it as a table, though you can express it any way you want so long as it's clear.

Solution: We must have $V \geq U$, so put probability 0 on each (u, v) pair with v < u. If u = v, then both rolls must be equal to this value; there is only one way to achieve this roll out of the 16 possible rolls, for a probability of 1/16. If u < v, then one roll is u and the other is v, and there are two ways to achieve this, making the probability 1/8. So the table is:

			V		
		1	2	3	4
	1	1/16	1/8	1/8	1/8
U	2	0	1/16	1/8	1/8
	3	0	0	1/16	1/8
	4	0	0	0	1/16

[2 points]

(b) What is P(U = V)?

Solution: Reading the answer off the table, it's

$$\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{4}.$$

[2 points]

(c) What is P(V = 4 | U = 3)?

Solution:

$$\frac{1/8}{1/16+1/8} = \frac{2}{3}.$$

[2 points]

(d) Are U and V independent? Justify your answer.

Solution: No, definitely not. For example P(U=4,V=1)=0, but $P(U=4)\neq 0$ and $P(V=1)\neq 0$.

5 points]			have an urn wit don't consider y		•	·		and pull out three bal	ls.
		(a)	The size of the 10^3					ent is	
		(b)	Let A be the esample contains	vent that your ball 2. Then	sample	includes are		B the event that yo	ur
			$\sqrt{\text{not d}}$		C	disjoint			
			and A and B are) indeper	ndont		
			V HOU II	ndependent) indeper	idem		
		(c)	that your sampl	le contains ball	13 and 4	4. Then A		, and let B be the eve	ent
			O not di		$\sqrt{}$	disjoint			
			and A and B are			\ 1	14		
			√ not 11	ndependent) indeper	ident		
[1 point]	I	D b	e the event that	t the person to which of the	ruly has following	the dise	ase. Let Λ ions represe	est probabilistically. If be the event that the ents the probability the	he
	1	\sqrt{I}	$P(D \mid N^c)$	$\bigcirc P(N^c \mid D)$))	$\bigcirc P(L)$	$O \cap N^c)$	$\bigcirc P(D \cup N^c)$	
4 points]	10. \$	Supj	pose that X is a	continuous ran	ıdom va	riable witl	n probabilit	by density function $f(z)$	x).
		(a)	The range of po	ssible values o	f X is g	iven by th	ne range of	y-values of $f(x)$.	
		` /	O True				epends on .		
		(b)	The range of po √ True	ssible values of False	X is gi		e set of x -va	clues for which $f(x) > f(x)$	0.
		(c)	For any real nur	mber k , it hold	ls that I	P(X=k)	=0.		
			$\sqrt{\text{ True}}$	O False		O It de	epends on j	f(x)	
		(d)	For any real num $P(a < X < b) =$			< b, it hol	ds that		
			1/ True	○ False		∩ It de	epends on	f(x)	