I pledge that I have neither given nor received unauthorized assistance during this examination.

Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise **you must show your work** sufficiently much that it's clear to me how you arrived at your answer.
- No calculators or electronic devices are allowed.
- Unless the problem specifically says, you **do not** need to calculate the final answer. An answer that looks something like

$$\frac{\binom{6}{2}\binom{8}{5}}{\binom{23}{4}}$$
 or $\frac{(12)(11)(10) + (11)(10)(9)}{14!}$

is entirely acceptable.

- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 10 problems on 8 pages.

Question	Points	Score
1	15	
2	9	
3	6	
4	11	
5	10	
6	10	
7	12	
8	5	
9	1	
10	4	
Total:	83	

Good luck!

[15 points] 1. Suppose we roll a 6-sided die over and over again.

In the following answers, you don't need to compute a final answer, and you may leave an expression like $\binom{13}{6}$ in that form. But you should not leave your answer as an infinite sum.

(a) What is the expected number of rolls to get a six?

(b) What is the probability that it takes exactly 5 rolls to get a six?

(c) What is the probability that it takes 5 or more rolls to get a six?

(d) What is the probability of getting 2 or fewer sixes in the first 10 rolls?

(e) What is the probability that the sum of the first 2 rolls is 4 or less?

[9 points] 2. Suppose X and Y have joint density function

$$f(x,y) = \begin{cases} \frac{12}{7}(xy+y^2) & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find the marginal probability density function of X. Fully compute all integrals. Be sure to clearly state where the p.d.f. is zero and where it's nonzero.

(b) Find P(X < Y). Set up integrals but do not compute them.

(c) Compute $E(e^{XY^2})$. Set up integrals but do not compute them.

[6 points] 3. Let $X \sim \text{Unif}[0,2]$. Let Y = 1/X. Find the probability density function of Y. If the density is zero outside of some region, be sure to clearly state this.

4. There are 5 types of sandwiches for sale at a shop. For 10 days, you go to the shop for lunch and order one of the 5 sandwiches uniformly at random, independently of previous days.

[4 points]

(a) What is the probability that you order the falafel sandwich sometime during the 10 days?

[4 points]

(b) Let X be the number of different sandwiches out of the 5 types you try in the 10 days. Find E(X).

[3 points]

(c) For $i=1,\ldots,5$, let X_i be the number of times you order sandwich type i in the 10 days. Are X_1,\ldots,X_5 independent? Justify your answer.

5. Suppose that $X \sim \text{Poi}(100)$, and recall that E(X) = 100 and Var(X) = 100.

[3 points]

(a) Give a bound on $P(X \ge 120)$ using Markov's inequality.

[3 points]

(b) Give a bound on $P(X \ge 120)$ using Chebyshev's inequality.

[4 points]

(c) Recall that if X_1, \ldots, X_{100} are independent and $X_i \sim \text{Poi}(1)$, then $X_1 + \cdots + X_{100} \sim \text{Poi}(100)$. Using the central limit theorem, estimate

$$P(X_1 + \dots + X_{100} \ge 120),$$

to get another estimate of $P(X \ge 120)$. Write your answer in terms of $\Phi(x)$, the cumulative distribution function of the standard normal distribution.

6. Customers arrive at a store. After a customer arrives, the number of minutes until the next customer arrives is random with distribution Exp(1). The times between customer arrivals are all independent.

A customer arrives. Let X be the number of minutes from now until two more customers arrive.

[3 points]

(a) What is E(X)?

[3 points]

(b) What is Var(X)?

[4 points]

(c) What is the probability density function of X?

7. You roll two 4-sided dice. Let U be the minimum and V be the maximum of the two rolls.

[6 points]

(a) Find the joint probability mass function of U and V. It is easiest to show it as a table, though you can express it any way you want so long as it's clear.

[2 points]

(b) What is P(U = V)?

[2 points]

(c) What is P(V = 4 | U = 3)?

[2 points]

(d) Are U and V independent? Justify your answer.

[5 points]	8.	You have an urn with balls numbered $1, \ldots, 10$. You reach in and pull out three balls. You don't consider your three chosen balls to have any order.							
		(a)	The size of the n $\bigcirc 10^3$	nost natural sam			experimen () 3!	at is	
		(b)	Let A be the every sample contains \bigcirc not distant A and B are	ball 2. Then A sjoint	and B \bigcirc d	are isjoint		B the event that	your
			onot inc	dependent	() 11	ndependen	t		
		(c)	Let A be the every that your sample \bigcirc not dis	e contains ball 3	3 and 4			and let B be the	event
			and A and B are	•	0 4				
			O not inc	dependent) ii	ndependen	t		
[1 point]	9.	D b	atient is tested for the event that on tests negative.	the person true Which of the fo	ly has ollowing	the diseas g expression	e. Let N ns represen	be the event that	at the
			erson who has test		-				
		()	$P(D \mid N^c)$	$\bigcirc P(N^c \mid D)$		$\bigcirc P(D)$	$\cap N^c)$	$\bigcirc P(D \cup N^c)$)
[4 points]	10.		pose that X is a contract The range of posening \bigcap True	sible values of 2	X is giv	ven by the		-values of $f(x)$.	f(x).
		(b)	The range of pos	sible values of X \bigcirc False	K is giv		set of x -valuends on $f(x)$) > 0.
		(c)	For any real num	ober k , it holds \bigcirc False	that P		0. ends on $f(x)$	r)	
		(d)	For any real num $P(a < X < b) =$ \bigcirc True		ith $a <$		that ends on $f(x)$	(x)	