You can answer any FOUR of these problems. If you submit five solutions, I’ll grade only the first four.

Lebesgue measure is denoted by m.

You can use any result from chapters 1 and 2 of the textbook, but not homework exercises.

Problem 1. Let (X, \mathcal{M}) be a measurable space. Show that the characteristic function $\chi_E: X \to \mathbb{R}$ is measurable if and only if $E \in \mathcal{M}$.

Problem 2. Let $\{f_n\}$ be a sequence of measurable functions on measure space (X, \mathcal{M}, μ) and suppose that $f_n \to f$ pointwise. Suppose that $\int |f_n| \, d\mu \leq 1$ for all n.

(a) Show that $\int |f| \, d\mu \leq 1$.

(b) Give an example of such a sequence $\{f_n\}$ on $(\mathbb{R}, \mathcal{B}_\mathbb{R}, m)$ where $f_n \not\to f$ in L^1.

(c) Suppose that $|f_n| \leq |f|$ for all n. Show that $f_n \to f$ in L^1.

Problem 3. Let μ be a measure on X. Let E_1, E_2, \ldots be measurable sets such that $\sum_{n=1}^{\infty} \mu(E_n) < \infty$. Let

$$ F = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n. $$

Prove that $\mu(F) = 0$.

Problem 4. Let $f: \mathbb{R} \to [0, \infty]$ be a Borel measurable function, and for $t \in \mathbb{R}$ define $f_t: \mathbb{R} \to [0, \infty]$ by $f_t(x) = f(t + x)$. (You do not need to show that f_t is measurable.) Show that for any t,

$$ \int f \, dm = \int f_t \, dm, $$

where m is Lebesgue measure on \mathbb{R}.

Problem 5. Let m^* denote Lebesgue outer measure on \mathbb{R}, and let E be a subset of \mathbb{R}, not necessarily Lebesgue measurable, with $m^*(E) < \infty$. Let $E_n = E \cap [-n, n]$. Prove that $m^*(E_n) \to m^*(E)$ as $n \to \infty$.

Date: March 19, 2024.