Problem 1. Define \(f: \mathbb{R}^n \to \mathbb{R} \) by
\[
f(x) = \frac{1}{m(B_1(0))} \chi_{B_1(0)}(x).
\]
Show that the Hardy-Littlewood maximal function \(Hf \) is not integrable. \textit{Hint:} Show that \(Hf(x) \geq c|x|^{-n} \) for some \(c \) and all large enough \(|x| \). You can use Corollary 2.52 even though we didn’t officially cover it.

Commentary: this problem shows that we can have \(f \in L^1 \) but \(Hf \notin L^1 \).

Problem 2. (Folland 3.23) A useful variant of the Hardy-Littlewood maximal function is
\[
H^*f(x) = \sup \left\{ \frac{1}{m(B)} \int_B |f(y)| \, dy : B \text{ is an open ball containing } x \right\}.
\]
Show that \(Hf \leq H^*f \leq 2^n Hf \) for any \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \).

Problem 3. (Folland 3.24) Show for any \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \) that if \(f \) is continuous at \(x \), then \(x \) is in the Lebesgue set of \(f \).

Problem 4. (Folland 3.25) If \(E \) is a Borel set in \(\mathbb{R}^n \), the \textit{density} \(D_E(x) \) of \(E \) at \(x \) is defined as
\[
D_E(x) = \lim_{r \to 0} \frac{m(E \cap B_r(x))}{m(B_r(x))}
\]
whenever the limit exists.

(a) Show that \(D_E(x) = 1 \) for a.e. \(x \in E \) and \(D_E(x) = 0 \) for a.e. \(x \in E^c \).
(b) Find examples of \(E \) and \(x \) such that \(D_E(x) \) is a given \(\alpha \in (0, 1) \) and such that \(D_E(x) \) doesn’t exist.

\textit{Note:} This may or may not be helpful—there is more than one way to construct examples in part (b)—but feel free to compute integrals on \(\mathbb{R}^2 \) using polar coordinates (Theorem 2.49 in Folland, though that’s in greater generality).