PROBLEM SET MTH 70200 REAL ANALYSIS

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a nonnegative Borel-measurable function, and let $\varphi(t) = m(\{x: f(x) > t\})$, where *m* denotes Lebesgue measure. Show that φ is right-continuous and decreasing and that

$$\int_0^\infty \varphi(t) \, dt = \int f(x) \, dx.$$

Problem 2. Let $f \in L^1(\mathbb{R}, dm)$, where *m* denotes Lebesgue measure. Adopt the notation $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Let

$$A = \{ x \in \mathbb{R}^n \colon x_1 < \dots < x_n \}.$$

With m^n denoting *n*-dimensional Lebesgue measure, prove that

$$\int_A f(x_1)\cdots f(x_n)\,dm^n(x) = \frac{1}{n!} \left(\int f(x)\,dx\right)^n.$$

Hint: consider how the integral behaves under permutation of the coordinates of x.

Problem 3. Let q_1, q_2, \ldots be an enumeration of the rational numbers in [0, 1]. Prove that

$$\sum_{n=1}^{\infty} (-1)^n n^{-3/2} |x - q_n|^{\frac{1}{2} - q_n}$$

converges to a finite limit for Lebesgue–almost every $x \in [0, 1]$.

Problem 4. (Folland 3.4) Suppose that ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda - \mu$. Prove that $\lambda \ge \nu^+$ and $\mu \ge \nu^-$.

Problem 5. (Folland 3.5) Suppose that ν_1 and ν_2 are finite signed measures. Prove that $|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$. *Hint: Use the previous problem and you should get a very short solution.*

Problem 6. Show that the distance function $d(\mu, \nu) = |\nu - \mu|(X)$ is a metric on the vector space of finite signed measures on (X, \mathcal{M}) .

Date: March 14, 2024.