PROBLEM SET II MTH 70200 REAL ANALYSIS

Problem 1. Consider the following increasing, right-continuous function:

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$$

- a) Describe the associated Borel measure μ_F .
- b) Let μ_0 be the premeasure defined on the algebra of disjoint unions of *h*-intervals induced by *F*, and let μ^* be the outer measure induced by μ_0 . (This makes μ_F the restriction of μ^* to the Borel σ -algebra.) We mentioned in class that the domain of μ_F could also be taken to be the larger class of μ^* -measurable sets. Which sets are μ^* -measurable?

Problem 2. (Folland 1.28) Let F be increasing and right-continuous, and let μ_F be the associated measure. Show that $\mu_F(\{a\}) = F(a) - F(a-), \ \mu_F([a,b]) = F(b-) - F(a-), \ \mu_F([a,b]) = F(b) - F(a-), \ \text{and} \ \mu_F((a,b)) = F(b-) - F(a).$ (Here F(x-) denotes $\lim_{y\uparrow x} F(y)$.)

Commentary on Problem 2: a point x such that $\mu(\{x\}) > 0$ is called an *atom* of μ . Thus μ_F has no atoms if and only if F is continuous.

Problem 3. For a set $E \subset \mathbb{R}$, let diam $(E) = \sup E - \inf E$. Let μ be a **finite** Borel measure on \mathbb{R} with no atoms. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\operatorname{diam}(E) < \delta \Longrightarrow \mu(E) < \epsilon.$$

Problem 4. Let m^* be the outer measure on \mathbb{R} induced by the premeasure on h-intervals associated with some increasing, right-continuous $F \colon \mathbb{R} \to \mathbb{R}$. Suppose that $A \subseteq \mathbb{R}$ has the property that for any real a < b,

$$m^*(A \cap (a, b]) \le \frac{1}{2}m^*((a, b]).$$

Prove that $m^*(A) = 0$. (*Hint:* First assume that A is bounded.)

Problem 5. (Quals Spring 2016) Let $(X, \mathcal{M}_1, \mu_1)$ and $(X, \mathcal{M}_2, \mu_2)$ be measure spaces on the same set X. Let μ_1^* and μ_2^* be the outer measures on X generated by μ_1 and μ_2 , respectively. Prove that $\mu_1^* = \mu_2^*$ if and only if $\mu_2^*|_{\mathcal{M}_1} = \mu_1$ and $\mu_1^*|_{\mathcal{M}_2} = \mu_2$.

Date: February 8, 2024.