PROBLEM SET MTH 70200 REAL ANALYSIS

Problem 1. (Folland 3.37) Suppose $F \colon \mathbb{R} \to \mathbb{C}$. Show that there is a constant M such that $|F(x) - F(y)| \leq M|x - y|$ (that is, F is *Lipschitz continuous*) if and only if F is absolutely continuous and $|F'| \leq M$ a.e.

Problem 2. (Folland 3.39) Suppose that $\{F_j\}$ is a sequence of nonnegative increasing functions on [a, b] and that $F(x) = \sum_{j=1}^{\infty} F_j(x) < \infty$ for all $x \in [a, b]$. Prove that $F'(x) = \sum_{j=1}^{\infty} F'_j(x)$ for a.e. $x \in [a, b]$. *Hint:* It suffices to assume that $F_j \in NBV$. Consider the measures μ_{F_j} .

Problem 3. (Folland 3.40) Let F denote the Cantor function on [0, 1], and set F(x) = 0 for x < 0 and F(x) = 1 for x > 1. Let $\{[a_n, b_n]\}$ be an enumeration of the closed subintervals of [0, 1] with rational endpoints, and let

$$F_n(x) = F\left(\frac{x - a_n}{b_n - a_n}\right).$$

Then $G = \sum_{n=1}^{\infty} 2^{-n} F_n$ is continuous and strictly increasing on [0, 1], and G' = 0 a.e. *Hint:* use the previous exercise.

Problem 4. (Folland 6.7) Suppose that $f \in L^p \cap L^\infty$ for some $p < \infty$, so that $f \in L^q$ for q > p. Show that $||f||_{\infty} = \lim_{q \to \infty} ||f||_q$.

Problem 5. (Folland 6.13) Recall that a metric space is called *separable* if it has a countable dense subset. Show that $L^p(\mathbb{R}^n, m)$ is separable for $1 \leq p < \infty$, but $L^{\infty}(\mathbb{R}^n, m)$ is not separable. *Hint:* Find an uncountable collection of functions in L^{∞} that all have L^{∞} -distance at least 1 from each other.

Date: May 2, 2024.