Name:

On this quiz, you do not need to calculate the final answer. An answer that looks something like

$$\frac{\binom{6}{2}\binom{8}{5}}{\binom{23}{4}}$$
 or $\frac{(12)_3 + (11)(10)(9)}{14!}$

is entirely acceptable.

- 1. The probability that there is no accident at a certain busy intersection is 89% on any given day, independently of the other days.
 - (a) Find the probability that there will be no accidents at this intersection during the next 7 days.

Solution: By independence, it's $(.89)^7$.

(b) Find the probability that next September there will be exactly 2 days with accidents. (There are 30 days in September.)

Solution: We are looking for P(X=2) where $X \sim \text{Bin}(30,.11)$. This is

$$P(X=2) = {30 \choose 2} (.11)^2 (.89)^{28}.$$

(c) Find the probability that the first accident in September happens on or before September 5th.

Solution: The probability that no accident occurs on September 1–5 is $(.89)^5$. So the probability that at least one accident occurs in this time is $1 - (.89)^5$.

2. Suppose a soccer team wins each game with probability 2/5, loses with probability 2/5, and ties with probability 1/5.

In the following questions, your answer should be a distribution, which should look like Geo(1/3), or Bin(17, .3), or Ber(.9), or something like that.

(a) Let X be the number of games won out of the first ten games. What is the distribution of X?

Solution: Bin(10, 2/5)

(b) Let Y be the number of games won or tied out of the first ten. What is the distribution of Y?

Solution: Bin(10, 3/5)

(c) Let Z be the number of games played when the team first loses or draws a game. (For example, if the team's season starts win, win, draw, then Z=3.) What is the distribution of Z?

Solution: Geo(3/5)