Name: \qquad

1. Let $f(x)=2 x^{3}+3 x^{2}-12 x+1$. Find the absolute maximum and minumum of this function on the interval $[0,2]$.

Solution: First, we compute

$$
f^{\prime}(x)=6 x^{2}+6 x-12=6\left(x^{2}+x-2\right)=6(x+2)(x-1) .
$$

So, the critical points of $f(x)$ are $x=-2$ and $x=1$. Only the second of these is in the interval $[0,2]$. Plugging $x=1$ as well as the endpoints $x=0,2$ into f, we get

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=-6 \\
& f(2)=5
\end{aligned}
$$

We conclude that the maximum is 5 and the minimum is -6 .
2. Suppose that the sign of $f^{\prime}(x)$ is given below:

(a) Give all x-coordinates where $f(x)$ has a local minimum, or state that there are none.

Solution: $x=3$, since $f^{\prime}(x)$ changes from negative to positive there.
(b) Give all x-coordinates where $f(x)$ has a local maximum, or state that there are none.

Solution: $x=-1$, since $f^{\prime}(x)$ changes from positive to negative there.
(c) Sketch the graph in the space above the sign diagrams.

