Name: \qquad

1. Compute the derivatives of the following functions. You do not need to algebraically simplify your answers. For example, if $f(x)=10 x^{3}$, I would rather that you wrote $f^{\prime}(x)=10(3) x^{2}$ than $f^{\prime}(x)=30 x^{2}$ (it's easier to grade!).
(a) $f(x)=\sqrt{1-x^{3}}$

Solution:

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1-x^{3}}}\left(-3 x^{2}\right)
$$

(b) $g(t)=t e^{t^{2}}$

Solution:

$$
g^{\prime}(t)=e^{t^{2}}+t e^{t^{2}}(2 t)
$$

(c) $h(x)=(\sin (2 x+1))^{3}$

Solution:

$$
h^{\prime}(x)=3(\sin (2 x+1))^{2} \cos (2 x+1)(2)
$$

2. A large hot air balloon begins its descent by releasing air at a rate of 100 cubic meters per minute. The balloon is a sphere. What is the rate of change of the radius when it is 10 meters? (The formula for the volume V of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.)

Solution: Let r be the radius and V the volume of the balloon. We know that $\frac{d V}{d t}=-100 \mathrm{~m}^{3} / \mathrm{min}$. Our goal is to find $\left.\frac{d r}{d t}\right|_{r=10}$. We use the volume formula to relate r and V. Taking derivatives of both sides gives

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

We substitute $\frac{d V}{d t}=-100$ and $r=10$ and get

$$
-100=4 \pi\left(10^{2}\right) \frac{d r}{d t}
$$

Solving yields $\frac{d r}{d t}=-\frac{1}{4 \pi} \approx-0.080 \mathrm{~m} / \mathrm{min}$.

