Name: \qquad

1. Here is the graph of a function $f(x)$. Note that there is a vertical asymptote at $x=6$.

Find the following quantities. If a limit does not exist, say so. (If a limit diverges to infinity, it is acceptable either to say that it doesn't exist, or to say that it diverges to infinity, or to write down that its limit is ∞ or $-\infty$.)
(a) $\lim _{x \rightarrow 1^{-}} f(x)=$

Solution: 1

(b) $\lim _{x \rightarrow 1^{+}} f(x)=$

Solution: 1
(c) $\lim _{x \rightarrow 1} f(x)=$

Solution: 1
(d) $f(1)=$

Solution: 2
(e) $\lim _{x \rightarrow 2^{-}} f(x)=$

Solution: 2
(f) $\lim _{x \rightarrow 2^{+}} f(x)=$

Solution: 3

(g) $\lim _{x \rightarrow 2} f(x)=$

Solution: doesn't exist
(h) $f(2)=$

Solution: 3

(i) $\lim _{x \rightarrow 3} f(x)=$

Solution: 2

(j) $\lim _{x \rightarrow 6^{-}} f(x)=$

Solution: ∞, or say that the limit diverges to infinity, or say that the limit doesn't exist
2. Find $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$.

Solution: Simplify the fraction as

$$
\frac{x^{2}-25}{x-5}=\frac{(x-5)(x+5)}{x-5}=x+5
$$

(This doesn't work when $x=5$, but that doesn't affect the limit.) Now

$$
\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5}(x+5)=5+5=10
$$

3. Expand the algebraic expression $x(2 x+3)^{2}$ into a cubic polynomial, i.e., a polynomial of the form $a x^{3}+b x^{2}+c x+d$ for constants a, b, c, d. Please note:

- You are expanding an algebraic expression, so your solution should look like a chain of equalities. That is, it should begin $x(2 x+3)^{2}=\ldots$ and then be followed by more equalities until you arrive at a cubic polynomial.
- Write down this chain of equalities one after the other on the page, not scattered all around.
- Do not cross out or write on top of any equation; do not draw arrows that don't have any mathematical meaning.

Solution:

$$
x(2 x+3)^{2}=x\left(4 x^{2}+12 x+9\right)=4 x^{3}+12 x^{2}+9 x
$$

In the first step, we're using the fact $(a+b)^{2}=a^{2}+2 a b+b^{2}$. Then we're distributing the final x.

