Name: \qquad

1. Find the equation of the line that passes through the points $(-1,4)$ and $(2,10)$. Give your answer as an equation in slope-intercept form (i.e., as $y=m x+b$).

Solution: The slope is

$$
m=\frac{10-4}{2-(-1)}=2
$$

In point-slope form, the equation is

$$
y-4=2(x+1)
$$

Rewriting this in slope-intercept form, we get

$$
y=2 x+6
$$

2. Expand $(2 x+1)^{2}(x-1)$ as a cubic polynomial, i.e., a polynomial of the form $a x^{3}+b x^{2}+c x+d$ for constants a, b, c, d.

Solution:

$$
\begin{aligned}
(2 x+1)^{2}(x-1)=\left(4 x^{2}+4 x+1\right)(x-1) & =4 x^{3}+4 x^{2}+x-4 x^{2}-4 x-1 \\
& =4 x^{3}-3 x-1
\end{aligned}
$$

3. Find all solutions to $x-\frac{7}{x}=3$. Please note:

- Give exact answers, not approximations.
- As you solve the problem, write down equations one after the other on the page, not scattered all around.
- Do not cross out or write on top of any equation; do not draw arrows that don't have any mathematical meaning.

Solution: Multiply both sides of the equation by x (we know that $x \neq 0$):

$$
x^{2}-7=3 x .
$$

Rewrite this as

$$
x^{2}-3 x-7
$$

This doesn't factor, so we apply the quadratic formula to get

$$
x=\frac{3 \pm \sqrt{9+4(7)}}{2}=\frac{3 \pm \sqrt{37}}{2} .
$$

