
Basic differentiation

Covered in sections 3.3–3.7, 3.9.

1. Find derivatives of the following functions:

(a) f(θ) = sin(ln θ)

Solution: f ′(θ) = cos(ln θ)1θ

(b) h(t) = t(t
t)

Solution: There are several different ways to do this one. We’ll use the notation
exp(x) = ex. We can rewrite h(t) as

h(t) = exp
(

(ln t)tt
)

= exp
(

(ln t) exp
(
(ln t)t

))
.

By the chain rule,

h′(t) = exp
(

(ln t) exp
(
(ln t)t

)) d
dt

(
(ln t) exp

(
(ln t)t

))
.

Now let’s work on the last factor above. Using the product rule in the first line and
the chain rule in the second,

d

dt

(
(ln t) exp

(
(ln t)t

))
=

1

t
exp
(
(ln t)t

)
+ (ln t)

d

dt

(
exp
(
(ln t)t

))
=

1

t
exp
(
(ln t)t

)
+ (ln t) exp

(
(ln t)t

) d
dt

(
(ln t)t

)
=

1

t
exp
(
(ln t)t

)
+ (ln t) exp

(
(ln t)t

)(1

t
t+ ln t

)
=

1

t
exp
(
(ln t)t

)
+ (ln t) exp

(
(ln t)t

)(
1 + ln t

)
.

So, all together,

h′(t) = exp
(

(ln t) exp
(
(ln t)t

))(1

t
exp
(
(ln t)t

)
+ (ln t) exp

(
(ln t)t

)(
1 + ln t

))
= t(t

t)

(
1

t
tt + (ln t)(1 + ln t)tt

)
= t(t

t)tt
(

1

t
+ (ln t)(1 + ln t)

)
.

Another potential approach would have been to use logarithmic differentiation.

(c) f(x) = x2e1/x



Solution:

f ′(x) = 2xe1/x + x2e1/x(−x−2) = 2xe1/x − e1/x

2. Find equations for the tangent line to the graph of f at x = a:

(a) f(x) = x2 − x, a = 1

Solution: In these problems, the first step is to find f ′(a). The next step is to use
the point-slope equation for a line to get the equation of a line with slope f ′(a) that
contains the point (a, f(a)).

Doing this, we find that f ′(x) = 2x− 1 and f ′(1) = 1. The tangent line contains the
point (a, f(a)), or (1, 0). So, the tangent line is

y − 0 = 1(x− 1),

or just y = x− 1.

(b) f(x) = 5− 3x, a = 2

Solution: Doing this one first without thinking, we find f ′(2) = −3 and then we find
the point (a, f(a)) = (2,−1), giving us a line y + 1 = −3(x− 2).

With a bit more thought, the graph of f(x) is a line, and so the tangent line to it is
just the identical line, y = 5− 3x. Note that this is equivalent to the equation above.

Limits (including L’Hôpital’s rule)

Covered in sections 2.3–2.7 and 4.5.

3. Evaluate the limit or state that it doesn’t exist.

(a)

lim
x→∞

x2 − 3x4

x− 1

Solution:

lim
x→∞

x2 − 3x4

x− 1
= lim

x→∞

−3x3 + x

1− 1
x

The top of this diverges to −∞ and the bottom converges to 1. So, the limit diverges
to −∞. (Saying that the limit doesn’t exist is also valid.)
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(b)

lim
x→1

x1/(x−1)

Solution: Let f(x) = x1/(x−1). Then ln f(x) = lnx
x−1 . By L’Hôpital’s rule,

lim
x→1

ln f(x) = lim
x→1

lnx

x− 1
= lim

x→1

1
x

1

= 1.

It follows from limx→1 ln f(x) = 1 that ln
(
limx→1 f(x)

)
= 1. Exponentiating each side

of thise equation, we get

lim
x→1

f(x) = e1 = e.

(c)

lim
x→0

x3

sinx− x

Solution: By L’Hôpital’s rule applied three times,

lim
x→0

x3

sinx− x
= lim

x→0

3x2

cosx− 1
= lim

x→0

6x

− sinx
= lim

x→0

6

− cosx
= −6.

(d)

lim
x→3

2x2 − 5x− 3

x− 4

Solution: By direct evaluation,

lim
x→3

2x2 − 5x− 3

x− 4
=

2(32)− 5(3)− 3

3− 4
=

18− 15− 3

−1
= 0.

Implicit Differentiation

Covered in section 3.8.

4. Find an equation for the line tangent to the curve x2 + sin y = xy2 + 1 at the point (1, 0).
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Solution: Use implicit differentiation, taking the derivative of both sides of the equation:

d

dx

(
x2 + sin y

)
=

d

dx

(
xy2 + 1

)
Expanding both sides, we get

2x+ (cos y)
dy

dx
= y2 + 2xy

dy

dx
.

Now, we plug in x = 1 and y = 0:

2 +
dy

dx
= 0.

So, at (1, 0), we have dy
dx = −2.

Related Rates

Covered in section 3.10.

5. A road perpendicular to a highway leads to a farmhouse located 2 km off the highway. An
automobile travels on the highway at 80 km/h. How fast is the distance between the automobile
and farmhouse increasing when the automobile is 6 km past the intersection of the highway
and road?

Solution: Let’s start by making a picture and assigning variable names:

farmhouse

carx

2
D

We are given that dx
dt = 80. We want to find the value of dD

dt when x = 6. We use the
Pythagorean theorem to relate x and D:

D2 = 4 + x2.

We differentiate both sides of the equation to obtain

2D
dD

dt
= 2x

dx

dt
.
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When x = 6, we have D =
√

4 + 36 =
√

40. Plugging all known values into the above
equation,

2
√

40
dD

dt
= 2(6)(80).

Solving for dD
dt , we get

dD

dt
=

2(6)(80)

2
√

40
≈ 75.89.

The final conclusion is that the distance between the car and the farmhouse is increasing
at 75.89 km/h.

Linear Approximation

Covered in section 4.1.

6. Let P = (2, 1), a point on the curve y3 + 3xy = 7. Give the approximate y-coordinate of the
point on the curve near P with x-coordinate 2.1.

Solution: We use implicit differentiation to find dy
dx at P :

3y2
dy

dx
+ 3y + 3x

dy

dx
= 0

=⇒ dy

dx
= − y

x+ y2
= −1

3
.

Now, we use the linear approximation formula to estimate the y-value at 2.1, which is
shifted over from P by ∆x = 0.1:

y ≈ x+
dy

dx
∆x = 1− 1

3
(0.1) ≈ 0.967.

Maxima, minima, and optimization

Covered in sections 4.2, 4.7.

7. Find the maximum value of f(x) = 2
√
x− x on [0, 4].

Solution: Because we’re finding the maximum of a continuous function on a closed interval,
we just need to check the function at critical points and at the endpoints. First, we find
the critical points:

f ′(x) =
1√
x
− 1 = 0,
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yielding a single critical point at x = 1. We evaluate

f(0) = 0,

f(1) = 1

f(4) = 0.

So, the maximum value of f(x) on the interval is 1, occurring at x = 1.

8. Find the point on the curve y2 = 2x closest to (1, 4).

2 4 6 8 10 12

−4

−2

2

4

Solution: Let (x, y) be a point on the curve. Let D be the distance from (x, y) to (1, 4),
given by

D =
√

(x− 1)2 + (y − 4)2.

Our goal is to minimize D subject to the constraint y2 = 2x that arises since (x, y) is a
point on the given curve.

Rewriting the constraint, we have x = y2/2. Plugging this into the formula for D gives

D =

√(
y2

2
− 1

)2

+ (y − 4)2.

Ordinarily, our goal would be to maximize D on (−∞,∞), and this approach will work.
However, it’s easier to consider the function D2, given by

f(y) =

(
y2

2
− 1

)2

+ (y − 4)2

and then to maximize this instead. Since the maximum of D2 occurs at the same place as
the maximum of D, this is just as good.
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First, we find all critical points of f(y) by finding f ′(y), setting it equal to 0, and then
solving for y. This will give y = 2. We can then check that f ′(y) is negative for y < 2
and is positive for y > 2. This means that an absolute minimum occurs at y = 2. So, the
minimum point on the curve is when y = 2, in which case x = 22/2 = 2. Thus, the closest
point to (1, 4) on the curve is (2, 2).

The shape of a graph

Covered in sections 4.3, 4.4, and 4.6.

9. Sketch the graph of y = xe−x
2
. Be accurate with regard to whether the graph is increasing or

decreasing, its concavity, and its asymptotic behavior.

Solution: We need to determine when y′ and y′′ are positive and negative.

y′ = e−x
2 − 2x2e−x

2
= (1− 2x2)e−x

2
,

y′′ = −2xe−x
2 − 4xe−x

2
+ 4x3e−x

2
= 2(2x2 − 3)xe−x

2
.

This gives us critical points x = ±1/
√

2, and it gives us roots of y′′ of 0 and ±
√

3/2. Since

e−x
2

is always positive, we get the following sign charts for y′ and y′′:

y′:
− + −

− 1√
2

1√
2

y′′:
− + − +

−
√

3
2

√
3
2

0

The function has no vertical asymptototes. It has horizontal asymptotes in both directions
at y = 0, since

lim
x→±∞

xe−x
2

= 0,

which you can confirm using L’Hôpital’s rule. Here’s a sketch taking all of this into
consideration, with the sign diagrams underneath for easy reference:
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−3 −2 −1 1 2 3

−0.5

−0.4

−0.3

−0.2

−0.1

0.1

0.2

0.3

0.4

0.5

y′:
− + −

− 1√
2

1√
2

y′′:
− + − +

−
√

3
2

√
3
2

0

Area and definite integrals

Covered in sections 5.1, 5.2.

10. The following is a graph of y = g(x).
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1 2 3 4 5

−2

−1

1

2

Evaluate

∫ 5

0
g(t) dt.

Solution: There are three areas to be computed: a triangle below the y-axis from x = 0
to x = 1, a triangle above the y-axis from x = 1 to x = 4, and a triangle below the y-axis
from x = 4 to x = 5. The first has signed area −1

2 , the next area 3, and the last area −1.
So, ∫ 5

0
g(t) dt = −1

2
+ 3− 1 = 1.5.

11. Compute R5, the right endpoint approximation with 5 rectangles, for the area under the curve
f(x) = x2 + x from −1 to 1.

Solution: The width of each rectangle is 2/5 = .4. The right endpoints of the rectangles
are −.6, −.2, .2, .6, and 1. We evaluate

f(−.6) = −.24,

f(−.2) = −.16,

f(.2) = .24,

f(.6) = .96,

f(1) = 2.

So, the total signed area of the rectangles is

.4(−.24− .16 + .24 + .96 + 2) = 1.12.

Antiderivatives, the fundamental theorem of calculus, and integration
techniques

Covered in sections 5.3–5.5, 5.7–5.8.
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12. Compute the following integrals.

(a) ∫
(
√
t+ 1)(t+ 1) dt

Solution:

2

5
t5/2 +

1

2
t2 +

2

3
t3/2 + t+ C

(b) ∫ 0

−2
(3x− 9e3x)dx

Solution: 3e−6 − 9

(c) Find

d

dx

∫ x4

1

√
t dt

Solution: x2 · 4x3 = 4x5

(d) ∫ 1

0

x

(x2 + 1)3
dx

Solution: 3
16

(e) ∫
1√

9− 4x2
dx

Solution: 1
2 sin−1

(
2
3x
)

+ C
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