\qquad
April 17, 2024
I pledge that I have neither given nor received
unauthorized assistance during this examination.
Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise you must show your work sufficiently much that it's clear to me how you arrived at your answer.
- You may use any sort of calculator, but not a phone or a computer.
- It is okay to leave a numerical answer like $\frac{39}{2}-\left(18-e^{2}\right)$ unsimplified.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 7 problems on 10 pages.

Question	Points	Score
1	16	
2	12	
3	10	
4	10	
5	12	
6	8	
7	10	
Total:	78	

Good luck!

[16 points] 1. Find the derivatives of the following functions. Do not simplify your solutions.
(a) $f(t)=\frac{1+e^{t}}{1-e^{t}}$

Solution:

$$
f^{\prime}(t)=\frac{\left(1-e^{t}\right) e^{t}+\left(1+e^{t}\right)\left(-e^{t}\right)}{\left(1-e^{t}\right)^{2}}
$$

(b) $f(x)=\ln \left(4 x^{2}+1\right)$

Solution:

$$
f^{\prime}(x)=\frac{1}{4 x^{2}+1}(8 x)
$$

(c) $f(\theta)=\cos (\cos (\cos \theta))$

Solution:

$$
f^{\prime}(\theta)=-\sin (\cos (\cos \theta))(-\sin (\cos \theta))(-\sin \theta)
$$

(d) $f(x)=\sin (2 x) \cos x$

Solution:

$$
f^{\prime}(x)=\cos (2 x)(2) \cos x+\sin (2 x)(-\sin x)
$$

2. Car A drives east away from Yonkers at 30 mph . Car B drives south towards Yonkers at 10 mph . (See the diagram below.)

[2 points] (a) Let u be the distance between Car A and Car B . What is u at the moment when Car A is 3 miles east of Yonkers and Car B is 4 miles north of Yonkers?

Solution: Let x be the distance from car A to Yonkers and let y be the distance from car B to Yonkers. Then u is the length of the hypotenuse of a right triangle with sides x and y. When $x=3$ and $y=4$, we have $3^{2}+4^{2}=u^{2}$ and hence $u=5$.
(b) What is the rate of change of u at the moment when Car A is 3 miles east of Yonkers and Car B is 4 miles north of Yonkers?

Solution:

Solution:

Assign variables: Let x be the distance from car A to Yonkers and let y be the distance from car B to Yonkers. Let u be the distance between the two cars, as given.
Known. We're given that $\frac{d x}{d t}=30 \mathrm{mph}$ and $\frac{d y}{d t}=-10 \mathrm{mph}$.
Want. We want to find $\frac{d u}{d t}$ at the moment when $x=3$ and $y=4$.
Relation. By the Pythagorean theorem, $u^{2}=x^{2}+y^{2}$.
Take derivatives, substitute, solve. Taking the derivative of both sides of the relation gives

$$
2 u \frac{d u}{d t}=2 x \frac{d x}{d t}+2 y \frac{2 y}{d t} .
$$

When $x=3$ and $y=4$, the value of u is 5 by part (a). Plugging in these values along with $\frac{d x}{d t}=30$ and $\frac{d y}{d t}=-10$ gives

$$
2(5) \frac{d u}{d t}=2(3)(30)+2(4)(-10)=180-80=100 .
$$

So, $\frac{d u}{d t}=10$. That is, the distance between the two cars is increasing at 10 mph .
3. Suppose that the signs of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are given below:

[2 points] (a) Give all x-coordinates where $f(x)$ has a local minimum, or state that there are none.

Solution: $x=3$, since $f^{\prime}(x)$ changes from negative to positive there.
[2 points] (b) Give all x-coordinates where $f(x)$ has a local maximum, or state that there are none.

Solution: $x=-2$, since $f^{\prime}(x)$ changes from positive to negative there.
[2 points] (c) Give all x-coordinates where $f(x)$ has an inflection point, or state that there are none.

Solution: $x=-1$, since $f^{\prime \prime}(x)$ changes signs there.
[4 points] (d) Sketch the graph in the space above the sign diagrams.
[10 points] 4. A rectangular area along the ocean is to be fenced off for a private event. The fence only needs to cover three sides of the area; the ocean is the fourth side. Suppose the fence parallel to the water has length y and the two sides of fence perpendicular to the water have length x as in the diagram.

Suppose that you have 80 meters of fencing in total that you will use to block off the area. What are the dimensions x and y of the rectangle with the largest area satisfying this contraint?

Solution: The constraint on the rectangle is that the three sides add up to 80 meters, i.e., $2 x+y=80$. The goal is to maximize the area $x y$. So the objective function is

$$
A(x)=x y=x(80-2 x)=80 x-2 x^{2} .
$$

We are trying to maximize $A(x)$ over the interval [0,40] (the 40 is chosen because the two sides of length x use up all 80 meters of fencing when $x=40$). We look for critical points of $A(x)$:

$$
A^{\prime}(x)=80-4 x=0,
$$

yielding a solution $x=20$. We have $A(0)=0, A(20)=800$, and $A(40)=0$. So the maximum occurs at $x=20$. When $x=20$, we have $y=40$. So the dimensions of the rectangle maximizing the area are 20×40.
5. Let $f(x)=\frac{1}{4-x^{2}}$.
[3 points] (a) Does this function have horizontal asymptotes at $\pm \infty$? If so, say what they are.

Solution: Since

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{4-x^{2}}=0
$$

this function has horizontal asymptotes $y=0$ at $\pm \infty$.
[3 points] (b) Does this function have any vertical asymptotes? If so, say what they are.
Solution: This function has vertical asymptotes at x-values that make its denominator equal to 0 . To find them, we solve $4-x^{2}=0$ and get $x= \pm 2$. So the function has vertical asymptotes at $x= \pm 2$.
[3 points] (c) On what intervals is this function increasing?
Solution: Writing $f(x)=\left(4-x^{2}\right)^{-1}$, we find

$$
f^{\prime}(x)=-\frac{1}{\left(4-x^{2}\right)^{2}}(-2 x)=\frac{2 x}{\left(4-x^{2}\right)^{2}} .
$$

We have a critical point at $x=0$, and we have the vertical asymptotes at $x= \pm 2$. So we need to figure out the direction of the function on the intervals $(-\infty,-2),(-2,0),(0,2)$, and $(2, \infty)$. The derivative is positive when $x>0$ and negative when $x<0$, since its numerator is positive when $x>0$ and negative when $x<0$ and its denominator is always positive. So the function is increasing on $(0,2)$ and $(2, \infty)$, where the derivative is positive.
[3 points] (d) On what intervals is this function decreasing?
Solution: On $(-\infty,-2)$ and $(-2,0)$, where the derivative is negative.
[8 points] 6. Consider the curve formed by the solutions to $x^{3}+y^{3}=3 x y$. What is the slope of its tangent line at the point $\left(\frac{2}{3}, \frac{4}{3}\right)$?

Solution: Use implicit differentiation to obtain

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}=3 y+3 x \frac{d y}{d x}
$$

Now solve for $\frac{d y}{d x}$, getting

$$
\frac{d y}{d x}=\frac{y-x^{2}}{y^{2}-x}
$$

Now plug in the point:

$$
\frac{d y}{d x}=\frac{\frac{4}{3}-\frac{4}{9}}{\frac{16}{9}-\frac{2}{3}}=\frac{\frac{8}{9}}{\frac{10}{9}}=\frac{4}{5}
$$

7. Let $f(x)=1+(\sin x)(\cos x)$.
[2 points]
[8 points]
(a) Find $f^{\prime}(x)$.

Solution:

$$
f^{\prime}(x)=\cos ^{2} x-\sin ^{2} x
$$ the linear approximation formula,

$$
f(0.01) \approx f(0)+(0.01) f^{\prime}(0)=1.01
$$

