Name: _____

Math 231, Midterm 2, version A November 18, 2019

I pledge that I have neither given nor received unauthorized assistance during this examination. Signature:

- **DON'T PANIC!** If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise **you must show your work** sufficiently much that it's clear to me how you arrived at your answer.
- You may use a scientific calculator on this exam, but you may not use a graphing calculator.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 8 problems on 8 pages.

Question	Points	Score
1	12	
2	10	
3	10	
4	6	
5	8	
6	8	
7	10	
8	8	
Total:	72	

Good luck!

[12 points] 1. Find the derivatives of the following functions. Do **not** simplify your solutions.

(a)
$$f(x) = \frac{\cos x}{x^2}$$

Solution:
 $f'(x) = \frac{x^2(-\sin x) - (\cos x)(2x)}{x^4}$
(b) $f(x) = e^{-\sqrt{2x+1}}$
Solution:
 $f'(x) = e^{-\sqrt{2x+1}} \left(-\frac{1}{2\sqrt{2x+1}}\right)(2)$
(c) $f(x) = x^3 + \frac{1}{x^2}$
Solution:
 $f'(x) = 3x^2 - 2x^{-3}$

[10 points] 2. A spherical balloon is being inflated. Suppose the radius expands at a constant rate of 2 cm/s. At the moment when the radius reaches 10 cm, how quickly is the volume of the balloon growing? (Note that the volume of a sphere with radius r is $\frac{4}{3}\pi r^3$.

Solution: Let r be the radius and V the volume of the balloon. We're given that $\frac{dr}{dt} = 2$, and we want to find $\frac{dV}{dt}$ when r = 10. Differentiating both sides of the equation $V = \frac{4}{3}\pi r^3$, we get

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.$$

Plugging in, we get

$$\frac{dV}{dt} = 4\pi (10)^2 (2) = 800\pi.$$

[10 points] 3. Let s(t) represent the number of subscribers of a streaming service at time t years (with t = 0 representing 2015, when the service started). The sign diagrams of s'(t) and s''(t) are given below.

(a) At time t = 1, which of the following is true about the streaming service:

 $\sqrt{}$ It's gaining subscribers, and the rate of gain is increasing.

 \bigcirc It's gaining subscribers, but the rate of gain is decreasing.

 \bigcirc It's losing subscribers, and the rate of loss is increasing.

 \bigcirc It's losing subscribers, but the rate of loss is decreasing.

(b) At time t = 5, which of the following is true about the streaming service:

 \bigcirc It's gaining subscribers, and the rate of gain is increasing.

 \bigcirc It's gaining subscribers, but the rate of gain is decreasing.

 \bigcirc It's losing subscribers, and the rate of loss is increasing.

 $\sqrt{}$ It's losing subscribers, but the rate of loss is decreasing.

(c) At what times does the number of subscribers achieve a local minimum? If the answer is never, say so.

Solution: I'd accept either t = 0 or never as correct answers (we've never really said whether or not an endpoint counts as a local minimum).

(d) At what times does the number of subscribers achieve a local maximum? If the answer is never, say so.

Solution: t = 3, since s'(t) changes from positive to negative there.

(e) Give the t-coordinates of all inflection points of s(t), or state that there are none.

Solution: t = 2 and t = 4, since s''(t) changes sign there.

(f) Sketch the graph of s(t) on the axes above the sign diagram. Assume that at time t = 0, the service has 0 users.

[6 points] 4. Compute

$$\lim_{x \to \infty} \frac{\ln x}{x}.$$

Solution: The top and bottom both approach infinity, so L'Hôpital's rule applies and gives

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0.$$

[8 points] 5. Let $f(x) = \ln(2x+1)$. Give an estimate of f(.1) using linearization.

Solution: The idea here is that we observe that $f(0) = \ln(1) = 0$, and we do linearization using this as our base point. We compute

$$f'(x) = \frac{2}{2x+1},$$

and $f'(0) = 2$. So,
 $f(.1) \approx f(0) + f'(0) \cdot (.1) = .2.$

[8 points] 6. Let $g(x) = x^3 - 3x + 2$. Find the absolute maximum and minimum of g(x) on the interval [0,3].

Solution: We find $g'(x) = 3x^2 - 3$ and set it equal to zero. This yields critical points $x = \pm 1$, of which only x = 1 is in the interval. Plugging in this point plus the endpoints into f gives:

g(0) = 2,g(1) = 0,g(3) = 20.

So, the minimum of g(x) is 0 and the maximum is 4 on [0,3].

7. Let $f(x) = \frac{(x-1)^2}{x^2}$. The first two derivatives of this function can be computed to be

$$f'(x) = \frac{2(x-1)}{x^3},$$

$$f''(x) = -\frac{2(2x-3)}{x^4}$$

[3 points]

(a) Give the locations of any vertical asymptotes of the function, or state that it doesn't have any.

Solution: There's a vertical asymptote at x = 0.

[3 points] (b) List all critical values of this function.

Solution: There's a critical value at x = 1.

[4 points] (c) Give the intervals where this function is increasing and the intervals where it is decreasing.

Solution: Increasing on $(-\infty, 0)$ and $(1, \infty)$, decreasing on (0, 1).

[8 points] 8. Consider the curve defined by equation $x^2y^3 + x^2 = 2$. Find the equation for the tangent line to the curve at (1, 1).

Solution: Differentiating with respect to x,

$$2xy^3 + 3x^2y^2\frac{dy}{dx} + 2x = 0.$$

Rearranging and isolating $\frac{dy}{dx}$, we get

$$\frac{dy}{dx} = \frac{-2x - 2xy^3}{3x^2y^2} = \frac{-2 - 2y^3}{3xy^2}.$$

At (1, 1), the slope of the tangent line is therefore (-2-2)/3 = -4/3. In point-slope form, the equation for the tangent line is

$$y - 1 = -\frac{4}{3}(x - 1).$$