I pledge that I have neither given nor received unauthorized assistance during this examination.

Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise **you must show your work** sufficiently much that it's clear to me how you arrived at your answer.
- You may use a scientific calculator on this exam, but you may not use a graphing calculator.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 8 problems on 8 pages.

	ъ.	
Question	Points	Score
1	12	
2	10	
3	10	
4	6	
5	8	
6	8	
7	10	
8	8	
Total:	72	

Good luck!

[12 points] 1. Find the derivatives of the following functions. Do **not** simplify your solutions.

(a)
$$f(x) = \frac{\cos x}{x^2}$$

(b)
$$f(x) = e^{-\sqrt{2x+1}}$$

(c)
$$f(x) = x^3 + \frac{1}{x^2}$$

[10 points] 2. A spherical balloon is being inflated. Suppose the radius expands at a constant rate of 2 cm/s. At the moment when the radius reaches 10 cm, how quickly is the volume of the balloon growing? (Note that the volume of a sphere with radius r is $\frac{4}{3}\pi r^3$.

- [10 points]
- 3. Let s(t) represent the number of subscribers of a streaming service at time t years (with t = 0 representing 2015, when the service started). The sign diagrams of s'(t) and s''(t) are given below.

- (a) At time t = 1, which of the following is true about the streaming service:
 - O It's gaining subscribers, and the rate of gain is increasing.
 - \bigcirc It's gaining subscribers, but the rate of gain is decreasing.
 - O It's losing subscribers, and the rate of loss is increasing.
 - O It's losing subscribers, but the rate of loss is decreasing.
- (b) At time t=5, which of the following is true about the streaming service:
 - O It's gaining subscribers, and the rate of gain is increasing.
 - O It's gaining subscribers, but the rate of gain is decreasing.
 - O It's losing subscribers, and the rate of loss is increasing.
 - O It's losing subscribers, but the rate of loss is decreasing.

(c) At what times does the number of subscribers achieve a local minimum? If the answer is never, say so.

(d) At what times does the number of subscribers achieve a local maximum? If the answer is never, say so.

(e) Give the t-coordinates of all inflection points of s(t), or state that there are none.

(f) Sketch the graph of s(t) on the axes above the sign diagram. Assume that at time t=0, the service has 0 users.

[6 points] 4. Compute

$$\lim_{x \to \infty} \frac{\ln x}{x}.$$

[8 points] 5. Let $f(x) = \ln(2x+1)$. Give an estimate of f(.1) using linearization.

[8 points] 6. Let $g(x) = x^3 - 3x + 2$. Find the absolute maximum and minimum of g(x) on the interval [0,3].

7. Let $f(x) = \frac{(x-1)^2}{x^2}$. The first two derivatives of this function can be computed to be

$$f'(x) = \frac{2(x-1)}{x^3},$$
$$f''(x) = -\frac{2(2x-3)}{x^4}.$$

[3 points]

(a) Give the locations of any vertical asymptotes of the function, or state that it doesn't have any.

[3 points] (b) List all critical values of this function.

[4 points] (c) Give the intervals where this function is increasing and the intervals where it is decreasing.

[8 points] 8. Consider the curve defined by equation $x^2y^3 + x^2 = 2$. Find the equation for the tangent line to the curve at (1,1).