\qquad
September 25, 2019

I pledge that I have neither given nor received
unauthorized assistance during this examination.
Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise you must show your work sufficiently much that it's clear to me how you arrived at your answer.
- You may use a scientific calculator on this exam, but you may not use a graphing calculator.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 6 problems on 9 pages.

Question	Points	Score
1	16	
2	14	
3	12	
4	12	
5	12	
6	11	
Total:	77	

Good luck!

[16 points] 1. (a)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+8}{x+2}=
$$

Solution:

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+8}{x+2}=\lim _{x \rightarrow 2} \frac{(x+2)(x+4)}{x+2}=\lim _{x \rightarrow-2}(x+4)=2 .
$$

(b)

$$
\lim _{y \rightarrow 1} \frac{y^{2}+y-5}{-y^{3}-2 y-1}=
$$

Solution:

$$
\lim _{y \rightarrow 1} \frac{y^{2}+y-5}{-y^{3}-2 y-1}=\frac{1^{2}+1-5}{-1^{3}-2(1)-1}=\frac{1+1-5}{-1-2-1}=\frac{-3}{-4}=\frac{3}{4}
$$

(c)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{4}+x^{2}+3 x+1}}{x^{2}+1}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{4}+x^{2}+3 x+1}}{x^{2}+1} & =\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{4}+x^{2}+3 x+1}}{x^{2}+1} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\left(4 x^{4}+x^{2}+3 x+1\right) \frac{1}{x^{4}}}}{1+\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{4+\frac{1}{x^{2}}+\frac{3}{x^{3}}+\frac{1}{x^{4}}}}{1+\frac{1}{x^{2}}} \\
& =\frac{\sqrt{4+0+0+0}}{1+0}=2 .
\end{aligned}
$$

(d)

$$
\lim _{t \rightarrow-\infty} \frac{2 t^{2}-t+2}{t^{3}-4}=
$$

Solution:

$$
\lim _{t \rightarrow-\infty} \frac{2 t^{2}-t+2}{t^{3}-4}=\lim _{t \rightarrow-\infty} \frac{2 t^{2}-t+2}{t^{3}-4} \frac{\frac{1}{t^{2}}}{\frac{1}{t^{2}}}=\lim _{t \rightarrow-\infty} \frac{2-\frac{1}{t}+\frac{2}{t^{2}}}{t-\frac{4}{t^{2}}}=0
$$

since $" \frac{2}{\infty} "=0$.
2. A ball is thrown directly upward in the air. Its height in meters at time t seconds is given by the formula

$$
h(t)=-5 t^{2}+20 t
$$

[6 points] (a) What is the average velocity of the ball from time 0 to time 2 ?

Solution:

$$
\frac{h(2)-h(0)}{2-0}=\frac{20-0}{2-0}=10 \text { meters } / \text { second. }
$$

[8 points] (b) How fast is the ball moving at time 2?
Solution: First, we compute $h^{\prime}(t)$:

$$
h^{\prime}(t)=-10 t+20 .
$$

Now the answer is

$$
h^{\prime}(2)=-10(2)+20=0 \text { meters } / \text { second } .
$$

[12 points] 3. Let

$$
f(x)=\frac{x^{2}+1}{3 x-2}
$$

(a) Does this function have any vertical asymptotes? If so, where do they occur? Justify your answer (briefly).

Solution: There is a vertical asymptote at $x=2 / 3$, because $\lim _{x \rightarrow 2 / 3} f(x)$ diverges to infinity there (we can see this because the bottom of the fraction converges to 0 and the top converges to something nonzero.
(b) Does this function have any horizontal asymptotes? If so, what are their values? Justify your answer (briefly).

Solution: Since $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow-\infty} f(x)=\infty$, there are no horizontal asymptotes. For there to be a horizontal asymptote, one of these limits would have to converge to a finite number.
[12 points] 4. (a) Compute $\frac{d}{d x}\left(2 x^{3}-7 x+1\right)$.

Solution:

$$
\frac{d}{d x}\left(2 x^{3}-7 x+1\right)=6 x^{2}-7
$$

(b) Let $g(u)=3 u^{4}-\frac{1}{\sqrt{u}}$. Find $g^{\prime}(1)$.

Solution: Since $g(u)=3 u^{4}-u^{-1 / 2}$.

$$
g^{\prime}(u)=12 u^{3}+\frac{1}{2} u^{-3 / 2} .
$$

So,

$$
g^{\prime}(1)=12+\frac{1}{2}=12.5
$$

[12 points] 5. Let $f(x)=(x+1)^{2}$. Using the definition of the derivative directly, compute $f^{\prime}(2)$. Warning: You will not receive credit for using differentiation rules. You must use limits to compute the derivative directly from the definition.

Solution:

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{b \rightarrow 2} \frac{f(b)-f(2)}{b-2}=\lim _{b \rightarrow 7} \frac{(b+1)^{2}-(2+1)^{2}}{b-2}=\lim _{b \rightarrow 2} \frac{b^{2}+2 b+1-9}{b-2}=\lim _{b \rightarrow 2} \frac{b^{2}+2 b-8}{b-2} \\
& =\lim _{b \rightarrow 2} \frac{(b-2)(b+4)}{b-2}=\lim _{b \rightarrow 2}(b+4)=6 .
\end{aligned}
$$

[11 points] 6. Here is the graph of a function $f(x)$ on the domain $0 \leq x \leq 8$:

Evaluate the following expressions. If the value does not exist, say so. You do not need to justify your answers.
(a) $f(1)=$

Solution: 4
(b) $\lim _{x \rightarrow 1} f(x)=$

Solution: 4
(c) $f^{\prime}(1)=$

Solution: - 1
(d) $f^{\prime}(3)=$

Solution: 0
(e) $\lim _{x \rightarrow 4} f(x)=$

Solution: 3
(f) $f(5)=$

Solution: 6
(g) $\lim _{x \rightarrow 5^{+}} f(x)=$

Solution: 5
(h) $\lim _{x \rightarrow 5} f(x)=$

Solution: doesn't exist
(i) $\lim _{x \rightarrow 6} f(x)=$

Solution: 3
(j) $f^{\prime}(6)=$

Solution: doesn't exist
(k) $f^{\prime}(7)=$

Solution: 0

This page can be used as scratch paper.

