Name: _____

Math 231, Midterm 1, version A March 1, 2018

I pledge that I have neither given nor received unauthorized assistance during this examination. Signature:

- **DON'T PANIC!** If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise **you must show your work** sufficiently much that it's clear to me how you arrived at your answer.
- You may use a scientific calculator on this exam, but you may not use a graphing calculator.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 6 problems on 9 pages.

Question	Points	Score
1	16	
2	18	
3	16	
4	10	
5	14	
6	9	
Total:	83	

Good luck!

[16 points] 1. (a)

$$\lim_{x \to 9} \frac{\sqrt{x-3}}{x-9} =$$

(b)

$$\lim_{y \to \infty} \frac{y^2 + y - 5}{1 - 2y - y^3} =$$

(c)

$$\lim_{x \to -\infty} \frac{3x^2 - 6x + 2}{2x^2 - 9} =$$

(d)

$$\lim_{t \to 3} \frac{t^2 - t + 1}{2t^2 - 8} =$$

In the following questions, you do not need to justify your answers.

- (a) List all values of x where f'(x) = 0.
- (b) Compute the following limits. If they don't exist, say so.
 - (i) $\lim_{x \to 2} f(x) =$
 - (ii) $\lim_{x \to 4} f(x) =$
 - (iii) $\lim_{x\to 5} f(x) =$
 - (iv) $\lim_{x \to 6^{-}} f(x) =$
 - (v) $\lim_{x \to 6^+} f(x) =$
 - (vi) $\lim_{x\to 7} f(x) =$
- (c) Circle true or false in the following questions. You do not need to justify your answers.

(i) $f(x)$ is continuous at $x = 1$.	True	False
(ii) $f(x)$ is continuous at $x = 2$.	True	False
(iii) $f(x)$ is continuous at $x = 3$.	True	False
(iv) $f(x)$ is continuous at $x = 4$.	True	False
(v) $f(x)$ is continuous at $x = 5$.	True	False
(vi) $f(x)$ is continuous at $x = 6$.	True	False

- (vii) f(x) is continuous at x = 7. True False
- (d) Estimate the following derivatives as best you can from the graph. If the derivative does not exist, say so.
 - (i) f'(1) =
 - (ii) f'(2) =
 - (iii) f'(3) =

[16 points] 3. (a) Find the equation for the tangent line to the graph $y = x^2 - 5x + 1$ at x = 3.

(b) Compute
$$\frac{d}{dt}\left(\frac{e^t}{t^3}\right)$$
.

[10 points] 4. Let $f(t) = \frac{4}{1+5t}$. Directly using the definition of the derivative, find f'(-1). Warning: You will receive no credit for using differentiation rules. You must use limits to compute the derivative directly from the definition. [14 points] 5. Let $g(x) = x^3 + 3x^2 - 9x + 1$.

(a) What is the average rate of change of g(x) from x = 0 to x = 2?

(b) Find all x-coordinates where the tangent line to g(x) is horizontal.

[9 points] 6. On the left are three functions f(x), g(x), and h(x). On the right are four functions, a(x), b(x), c(x), and d(x).

Circle one answer for each question:

- (a) The derivative of f(x) is... a(x)
- (b) The derivative of g(x) is... a(x)
- (c) The derivative of h(x) is... a(x)

b(x)	c(x)	d(x)	none of the above
b(x)	c(x)	d(x)	none of the above
b(x)	c(x)	d(x)	none of the above

This page can be used as scratch paper.