Math 231, Midterm 1, version A
Name: \qquad
March 1, 2018

I pledge that I have neither given nor received
unauthorized assistance during this examination.
Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise you must show your work sufficiently much that it's clear to me how you arrived at your answer.
- You may use a scientific calculator on this exam, but you may not use a graphing calculator.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 6 problems on 9 pages.

Question	Points	Score
1	16	
2	18	
3	16	
4	10	
5	14	
6	9	
Total:	83	

Good luck!

[16 points] 1. (a)

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=
$$

(b)

$$
\lim _{y \rightarrow \infty} \frac{y^{2}+y-5}{1-2 y-y^{3}}=
$$

(c)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-6 x+2}{2 x^{2}-9}=
$$

(d)
$\lim _{t \rightarrow 3} \frac{t^{2}-t+1}{2 t^{2}-8}=$
[18 points] 2. Here is the graph of a function $f(x)$ on the domain $0 \leq x \leq 8$:

In the following questions, you do not need to justify your answers.
(a) List all values of x where $f^{\prime}(x)=0$.
(b) Compute the following limits. If they don't exist, say so.
(i) $\lim _{x \rightarrow 2} f(x)=$
(ii) $\lim _{x \rightarrow 4} f(x)=$
(iii) $\lim _{x \rightarrow 5} f(x)=$
(iv) $\lim _{x \rightarrow 6^{-}} f(x)=$
(v) $\lim _{x \rightarrow 6^{+}} f(x)=$
(vi) $\lim _{x \rightarrow 7} f(x)=$
(c) Circle true or false in the following questions. You do not need to justify your answers.
(i) $f(x)$ is continuous at $x=1$. True False
(ii) $f(x)$ is continuous at $x=2$. True False
(iii) $f(x)$ is continuous at $x=3$. True False
(iv) $f(x)$ is continuous at $x=4$. True False
(v) $f(x)$ is continuous at $x=5$. True False
(vi) $f(x)$ is continuous at $x=6$. True False
(vii) $f(x)$ is continuous at $x=7$. True False
(d) Estimate the following derivatives as best you can from the graph. If the derivative does not exist, say so.
(i) $f^{\prime}(1)=$
(ii) $f^{\prime}(2)=$
(iii) $f^{\prime}(3)=$
[16 points] 3. (a) Find the equation for the tangent line to the graph $y=x^{2}-5 x+1$ at $x=3$.
(b) Compute $\frac{d}{d t}\left(\frac{e^{t}}{t^{3}}\right)$.
[10 points] 4. Let $f(t)=\frac{4}{1+5 t}$. Directly using the definition of the derivative, find $f^{\prime}(-1)$.
Warning: You will receive no credit for using differentiation rules. You must use limits to compute the derivative directly from the definition.
[14 points] 5. Let $g(x)=x^{3}+3 x^{2}-9 x+1$.
(a) What is the average rate of change of $g(x)$ from $x=0$ to $x=2$?
(b) Find all x-coordinates where the tangent line to $g(x)$ is horizontal.
[9 points] 6. On the left are three functions $f(x), g(x)$, and $h(x)$. On the right are four functions, $a(x), b(x), c(x)$, and $d(x)$.

Circle one answer for each question:
(a) The derivative of $f(x)$ is. . $a(x) \quad b(x) \quad c(x) \quad d(x) \quad$ none of the above
(b) The derivative of $g(x)$ is. . $a(x) \quad b(x) \quad c(x) \quad d(x) \quad$ none of the above
(c) The derivative of $h(x)$ is... $a(x) \quad b(x) \quad c(x) \quad d(x) \quad$ none of the above

This page can be used as scratch paper.

Page 7

