1. Find the derivatives of the following functions. You do not need to simplify your solutions.
$g(x)=\frac{1}{\sqrt[3]{x+\sqrt{x}}}$

Solution: On this one, it's best to view the function as $g(x)=(x+\sqrt{x})^{-1 / 3}$.

$$
g^{\prime}(x)=-\frac{1}{3}(x+\sqrt{x})^{-4 / 3}\left(1+\frac{1}{2 \sqrt{x}}\right)
$$

2. Consider the graph of $y=10 x^{3}-x^{5}$.
[4 points] (a) List the intervals on which this function is increasing.
Solution: The derivative is

$$
y^{\prime}=30 x^{2}-5 x^{4}=5 x^{2}\left(6-x^{2}\right) .
$$

So, the critical points are $x= \pm \sqrt{6}$ and $x=0$. We then check that y^{\prime} is negative when $x<-\sqrt{6}$ or $x>\sqrt{6}$, and y^{\prime} is positive when $-\sqrt{6}<x<0$ or $0<x<\sqrt{6}$. So, y is increasing on the intervals $(-\sqrt{6}, 0)$ and $(0, \sqrt{6})$. (It's decreasing on $(-\infty, \sqrt{6})$ and $(\sqrt{6}, \infty)$.)
[1 point] (b) Give the x-coordinates of all local minima, or say that there are none.
[1 point] (c) Give the x-coordinates of all local maxima, or say that there are none.
Solution: By the first derivative test, there is a local minimum at $x=-\sqrt{6}$ and a local maximum at $x=\sqrt{6}$.
[4 points]
(d) List the intervals on which this function is concave up.

Solution: First, we find the second derivative:

$$
y^{\prime \prime}=60 x-20 x^{3}=20 x\left(3-x^{2}\right) .
$$

So, $y^{\prime \prime}=0$ at $x= \pm \sqrt{3}$ and at $x=0$. We then figure out that $y^{\prime \prime}$ is positive on $(-\infty,-\sqrt{3})$, negative on $(-\sqrt{3}, 0)$, positive on $(0, \sqrt{3})$, and negative on $(\sqrt{3}, \infty)$. So, y is concave up on $(-\infty,-\sqrt{3})$ and on $(0, \sqrt{3})$.
[2 points] (e) List the x-coordinates of all inflection points.
Solution: There are inflection points where $y^{\prime \prime}$ changes signs. From the previous question, this happens at $x= \pm \sqrt{3}$ and at $x=0$.
[8 points] 3. (a) Find the slope of the tangent line to the curve defined by

$$
x^{2} y+y^{4}=4+2 x
$$

at the point $(-1,1)$.
Solution: Using implicit differentiation,

$$
2 x y+x^{2} \frac{d y}{d x}+4 y^{3} \frac{d y}{d x}=2 .
$$

Solving for $\frac{d y}{d x}$, we get

$$
\frac{d y}{d x}=\frac{2-2 x y}{x^{2}+4 y^{3}} .
$$

At $(-1,1)$, this is $4 / 5$.
[8 points] (b) Using linear approximation, estimate a y-value on this curve when $x=-0.9$.
Solution: We know that the curve contains the point $(-1,1)$, at which it has slope $4 / 5$. The change from $x=-1$ to $x=-0.9$ is 0.1 . So. the linear approximation for the y-value of the curve at $x=-0.9$ is

$$
1+(0.1) \frac{4}{5}=1.08
$$

[12 points] 4. Find the minimum and maximum value taken by the function $f(x)=2 \sqrt{x}-x$ in the interval $[0,3]$.

Solution: First, we find all critical points in the interval:

$$
f^{\prime}(x)=\frac{1}{\sqrt{x}}-1=0
$$

which has solution $x=1$. So, the maximum and minimum on $[0,3]$ must occur either at $x=1$ or at one of the endpoints $x=0$ and $x=3$. Evaluating, we find

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(3)=2 \sqrt{3}-3 \approx 0.464
\end{aligned}
$$

So, the minimum of the function is 0 and the maximum is 1 .

