• DON’T PANIC! If you get stuck, take a deep breath and go on to the next question.

• Unless the problem says otherwise you must show your work sufficiently much that it’s clear to me how you arrived at your answer.

• You may use a graphing or scientific calculator on this exam. You may not use a phone.

• You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.

• There are 9 problems on 9 pages.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>

Good luck!
1. Find all solutions to the following equations and inequalities. For inequalities with a range of solutions, you can give your answer using any notation (e.g., you may say that the solution set is \([5, 6)\) or that it’s given by \(5 \leq x < 6\)). If no solutions exist, say so.

(a) \(4x - 7 = 8 + 9x\)

Solution: \(x = -3\)

(b) \(x^2 + 9x + 20 = 0\)

Solution: \(x = -5, -4\)

(c) \(\sqrt{2x + 1} = x - 1\)

Solution: Squaring both sides, simplifying, and factoring gives the equation \(x(x - 4) = 0\), with solutions \(x = 0\) and \(x = 4\). But of these two solutions, only \(x = 4\) solves the original equation.
(d) \(-x + 3 > 4x\)

Solution: \(x < 3/5\), or \((-\infty, \frac{3}{5})\)

(e) \((x + 3)^2(x + 1) > 0\)

Solution: \((x + 3)^2\) is always positive, and \(x + 1\) is positive when \(x > -1\) and negative when \(x < -1\). So the whole expression is positive when \(x > -1\), or on the interval \((-1, \infty)\).

(f) \(x^5 = -2x^4\)

Solution: Shifting and factoring gives \(x^4(x + 2) = 0\), yielding solutions \(x = 0\) and \(x = -2\).
2. Simplify the following expressions as much as possible. You may assume that \(x \neq 0 \), so that expressions like \(\frac{1}{x} \) are well defined.

(a) \(\frac{x^2}{\sqrt{xx^{-3}}} \)

Solution:
\[
\frac{x^2}{\sqrt{xx^{-3}}} = x^2 x^3 x^{-1/2} = x^{2+3-1/2} = x^{9/2}
\]

(b) \((x^2 x^3)^4 \)

Solution:
\[
(x^2 x^3)^4 = (x^5)^4 = x^{5(4)} = x^{20}
\]

(c) \((x^{1/2} + x^{-1/2})^2 \)

Solution:
\[
(x^{1/2} + x^{-1/2})^2 = (x^{1/2})^2 + 2x^{1/2}x^{-1/2} + (x^{-1/2})^2 = x + 2 + \frac{1}{x}
\]
3. What is the domain of the function \(f(x) = \frac{1}{x-1} + \frac{x^2}{x+1} \)?

Solution: The domain is everything that can be plugged in, which is all real numbers except for 1 and \(-1\) (which would make a denominator zero).

4. Consider the following graph:

![Graph](image)

(a) Is this the graph of a function?

Solution: Yes.

(b) If the answer to part (a) is yes, what is the domain of the function? Give your answer in interval notation.

Solution: \([2, 7]\)

(c) If the answer to part (b) is yes, what is the range of the function? Give your answer in interval notation.

Solution: \([1, 5]\)
5. Let \(f(x) = -x^2 + 10x \).

(a) \[6\text{ points}\] Express \(f \) in standard form.

Solution:

\[
f(x) = -(x^2 - 10x) = -(x^2 - 10x + 25) + 25 = -(x - 5)^2 + 25
\]

(b) \[3\text{ points}\] What is the vertex of \(f \)?

Solution: From the standard form, we see that it’s \((5, 25)\)

(c) \[3\text{ points}\] List all \(x \)-intercepts of \(f \).

Solution: The \(x \)-intercepts are the roots of \(f(x) \), which we find by solving \(f(x) = 0 \):

\[
0 = -x^2 + 10x = -x(x - 10),
\]

so the roots are 0 and 10.

(d) \[3\text{ points}\] List all \(y \)-intercepts of \(f \).

Solution: The \(y \)-intercept of \(f(x) \) is found by plugging 0 in for \(x \):

\[
f(0) = 0
\]

So the \(y \)-intercept is 0.

(e) \[3\text{ points}\] Sketch the graph \(y = f(x) \) on these axes:
6. Expand and simplify the following expressions:

(a) \((5x + 1)^2\)

\[
\text{Solution: } 25x^2 + 10x + 1
\]

(b) \((y - 1)(y^2 + y + 4)\)

\[
\text{Solution: } y^3 + 3y - 4
\]
7. Here is the graph of the function $f(x)$ on the domain $[0, 3]$:

Sketch the graphs of the following functions on the axes below.

(a) $f(-x)$
(b) $f(x)/2$
(c) $-f(x + 1)$
8. A small-appliance manufacturing company finds that the production of \(x \) toaster ovens per month leads to monthly production costs of \(y \) dollars, with the relationship between \(x \) and \(y \) graphed below:

![Graph showing the relationship between production (x) and costs (y).](image)

(a) How much are the monthly production costs when no toaster ovens are being produced?

Solution: This is the value of \(y \) when \(x = 0 \), i.e., the \(y \)-intercept. It’s $3000.

(b) The company is currently producing 500 toaster ovens in a month. How much extra would it cost to produce one extra toaster oven in the month?

Solution: This question is asking how much \(y \) increases when \(x \) changes from 500 to 501. Since the graph is a line, it doesn’t actually matter that it changes from 500 to 501, just that it changes by 1. And to find out how much the \(y \)-value changes when the \(x \)-value changes by 1, we’re just looking for the slope of the line. Since it includes the points (0, 3000) and (1000, 9000), its slope is \(\frac{9000-3000}{1000-0} = 6 \). So the answer is that it would cost $6.

(c) Give an equation relating \(x \) and \(y \).

Solution: We’re looking for the equation of a line with slope 6 and \(y \)-intercept 3000:

\[
y = 6x + 3000
\]
9. You are going to use 400 feet of fencing to make a rectangular chicken coop.

(a) Find a function modeling the area $A(x)$ of the chicken coop in terms of its width x.

Solution: Let x and y be the width and length of the coop. The perimeter of the coop is $2x + 2y$, and we’re given that it’s 400. Rearranging $2x + 2y = 400$ gives $y = 200 - x$.

The area of the chicken coop is xy. Since $y = 200 - x$,

$$A(x) = x(200 - x) = -x^2 + 200x.$$

(b) What is area of the biggest coop you can make? What is its width?

Solution: We put $A(x)$ in standard form as

$$A(x) = -(x^2 - 200x) = -(x^2 - 200x + 10000) + 10000 = -(x - 100)^2 + 10000.$$

So, the maximum point on the parabola has x-value 100 and y-value 10000. That is, the biggest coop we can make has area 10000 sq. ft. and width 100 ft.