Problem 1

1. Give a short derivation of the Cauchy-Riemann equations.
2. Assume an analytic function f with

$$
f(x+i y)=\phi+i \psi
$$

and define $u=\nabla \phi$.
(a) Show that $\Delta \phi=\Delta \psi=0$.
(b) Show that $\nabla \phi \cdot \nabla \psi=0$.
(c) How can you express u in terms of ψ ?

Problem 2

Find the Fourier series of $f(x)=x^{2}$ for $-\pi<x \leq \pi$. Using this series, derive the following formula

$$
\frac{\pi^{2}}{12}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16} \cdots
$$

Problem 3

Compute the following integral:

$$
J=\int_{0}^{2 \pi} \frac{d \theta}{\frac{5}{4}+\sin \theta}
$$

Problem 4

Compute the following Fourier transform:

$$
\frac{1}{\sqrt{2 \pi}} \int \frac{1}{a^{2}+x^{2}} \mathrm{e}^{-i k x} d x
$$

Problem 5

Solve the following initial value problem using a Laplace transform. Use residues in order to calculate the inverse Laplace transform.

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0, \quad y(0)=0, y^{\prime}(0)=2
$$

